当前位置: 首页>>代码示例>>Python>>正文


Python Data.dutch_zeta方法代码示例

本文整理汇总了Python中SUAVE.Structure.Data.dutch_zeta方法的典型用法代码示例。如果您正苦于以下问题:Python Data.dutch_zeta方法的具体用法?Python Data.dutch_zeta怎么用?Python Data.dutch_zeta使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SUAVE.Structure.Data的用法示例。


在下文中一共展示了Data.dutch_zeta方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: dutch_roll

# 需要导入模块: from SUAVE.Structure import Data [as 别名]
# 或者: from SUAVE.Structure.Data import dutch_zeta [as 别名]
def dutch_roll(velocity, Cn_Beta, S_gross_w, density, span, I_z, Cn_r):
    """ output = SUAVE.Methods.Flight_Dynamics.Dynamic_Stablity.Approximations.dutch_roll(velocity, Cn_Beta, S_gross_w, density, span, I_z, Cn_r)
        Calculate the natural frequency and damping ratio for the approximate dutch roll characteristics       
        
        Inputs:
            velocity - flight velocity at the condition being considered [meters/seconds]
            Cn_Beta - coefficient for change in yawing moment due to sideslip [dimensionless]
            S_gross_w - area of the wing [meters**2]
            density - flight density at condition being considered [kg/meters**3]
            span - wing span of the aircraft [meters]
            I_z - moment of interia about the body z axis [kg * meters**2]
            Cn_r - coefficient for change in yawing moment due to yawing velocity [dimensionless]
        
        Outputs:
            output - a data dictionary with fields:
                dutch_w_n - natural frequency of the dutch roll mode [radian/second]
                dutch_zeta - damping ratio of the dutch roll mode [dimensionless]
            
        Assumptions:
            Major effect of rudder deflection is the generation of the Dutch roll mode.
            Dutch roll mode only consists of sideslip and yaw
            Beta = -Psi
            Phi and its derivatives are zero
            consider only delta_r input and Theta = 0
            Neglect Cy_r
            X-Z axis is plane of symmetry
            Constant mass of aircraft
            Origin of axis system at c.g. of aircraft
            Aircraft is a rigid body
            Earth is inertial reference frame
            Perturbations from equilibrium are small
            Flow is Quasisteady
            
        Source:
            J.H. Blakelock, "Automatic Control of Aircraft and Missiles" Wiley & Sons, Inc. New York, 1991, p 132-134.
    """ 
    
    #process
    w_n = velocity * (Cn_Beta*S_gross_w*density*span/2./I_z)**0.5 # natural frequency
    zeta = -Cn_r /8. * (2.*S_gross_w*density*span**3./I_z/Cn_Beta)**0.5 # damping ratio
    
    output = Data() 
    output.dutch_w_n = w_n
    output.dutch_zeta = zeta
    
    
    return output
开发者ID:thearn,项目名称:SUAVE,代码行数:49,代码来源:dutch_roll.py

示例2: lateral_directional

# 需要导入模块: from SUAVE.Structure import Data [as 别名]
# 或者: from SUAVE.Structure.Data import dutch_zeta [as 别名]
def lateral_directional(velocity, Cn_Beta, S_gross_w, density, span, I_z, Cn_r, I_x, Cl_p, J_xz, Cl_r, Cl_Beta, Cn_p, Cy_phi, Cy_psi, Cy_Beta, mass):
    """ output = SUAVE.Methods.Flight_Dynamics.Dynamic_Stablity.Full_Linearized_Equations.lateral_directional(velocity, Cn_Beta, S_gross_w, density, span, I_z, Cn_r, I_x, Cl_p, J_xz, Cl_r, Cl_Beta, Cn_p, Cy_phi, Cy_psi, Cy_Beta)
        Calculate the natural frequency and damping ratio for the full linearized dutch roll mode along with the time constants for the roll and spiral modes        
        Inputs:
            velocity - flight velocity at the condition being considered [meters/seconds]
            Cn_Beta - coefficient for change in yawing moment due to sideslip [dimensionless] (no simple relation)
            S_gross_w - area of the wing [meters**2]
            density - flight density at condition being considered [kg/meters**3]
            span - wing span of the aircraft [meters]
            I_z - moment of interia about the body z axis [kg * meters**2]
            Cn_r - coefficient for change in yawing moment due to yawing velocity [dimensionless] ( - C_D(wing)/4 - 2 * Sv/S * (l_v/b)**2 * (dC_L/dalpha)(vert) * eta(vert))
            I_x - moment of interia about the body x axis [kg * meters**2]
            Cl_p - change in rolling moment due to the rolling velocity [dimensionless] (no simple relation for calculation)
            J_xz - products of inertia in the x-z direction [kg * meters**2] (if X and Z lie in a plane of symmetry then equal to zero)
            Cl_r - coefficient for change in rolling moment due to yawing velocity [dimensionless] (Usually equals C_L(wing)/4)
            Cl_Beta - coefficient for change in rolling moment due to sideslip [dimensionless] 
            Cn_p - coefficient for the change in yawing moment due to rolling velocity [dimensionless] (-C_L(wing)/8*(1 - depsilon/dalpha)) (depsilon/dalpha = 2/pi/e/AspectRatio dC_L(wing)/dalpha)
            Cy_phi  - coefficient for change in sideforce due to aircraft roll [dimensionless] (Usually equals C_L)
            Cy_psi - coefficient to account for gravity [dimensionless] (C_L * tan(Theta))
            Cy_Beta - coefficient for change in Y force due to sideslip [dimensionless] (no simple relation)
            mass - mass of the aircraft [kilograms]
        
        Outputs:
            output - a data dictionary with fields:
                dutch_w_n - natural frequency of the dutch roll mode [radian/second]
                dutch_zeta - damping ratio of the dutch roll mode [dimensionless]
                roll_tau - approximation of the time constant of the roll mode of an aircraft [seconds] (positive values are bad)
                spiral_tau - time constant for the spiral mode [seconds] (positive values are bad)
            
        Assumptions:
            X-Z axis is plane of symmetry
            Constant mass of aircraft
            Origin of axis system at c.g. of aircraft
            Aircraft is a rigid body
            Earth is inertial reference frame
            Perturbations from equilibrium are small
            Flow is Quasisteady
            Zero initial conditions
            Neglect Cy_p and Cy_r
            
        Source:
            J.H. Blakelock, "Automatic Control of Aircraft and Missiles" Wiley & Sons, Inc. New York, 1991, p 118-124.
    """ 
    
    #process
    
    # constructing matrix of coefficients
    A = (0, -span * 0.5 / velocity * Cl_p, I_x/S_gross_w/(0.5*density*velocity**2)/span )  # L moment phi term
    B = (0, -span * 0.5 / velocity * Cl_r, -J_xz / S_gross_w / (0.5 * density * velocity ** 2.) / span) # L moment psi term
    C = (-Cl_Beta) # L moment Beta term
    D = (0, - span * 0.5 / velocity * Cn_p, -J_xz / S_gross_w / (0.5 * density * velocity ** 2.) / span ) # N moment phi term 
    E = (0, - span * 0.5 / velocity * Cn_r, I_z / S_gross_w / (0.5 * density * velocity ** 2.) / span ) # N moment psi term
    F = (-Cn_Beta) # N moment Beta term
    G = (-Cy_phi) # Y force phi term
    H = (-Cy_psi, mass * velocity / S_gross_w / (0.5 * density * velocity ** 2.))    
    I = (-Cy_Beta, mass * velocity / S_gross_w / (0.5 * density * velocity ** 2.))
    
    # Taking the determinant of the matrix ([A, B, C],[D, E, F],[G, H, I])
    EI = P.polymul(E,I)
    FH = P.polymul(F,H)
    part1 = P.polymul(A,P.polysub(EI,FH))
    DI = P.polymul(D,I)
    FG = P.polymul(F,G)
    part2 = P.polymul(B,P.polysub(FG,DI))    
    DH = P.polymul(D,H)
    GE = P.polymul(G,E)
    part3 = P.polymul(C,P.polysub(DH,GE))
    total = P.polyadd(part1,P.polyadd(part2,part3))
    poly = total / total[5]
    
    # Generate the time constant for the spiral and roll modes along with the damping and natural frequency for the dutch roll mode
    root = np.roots(poly)
    root = sorted(root,reverse=True)
    spiral_tau = 1 * root[0].real
    w_n = (root[1].imag**2 + root[1].real**2)**(-0.5)
    zeta = -2*root[1].real/w_n
    roll_tau = 1 * root [3].real
    
    output = Data()
    output.dutch_w_n = w_n
    output.dutch_zeta = zeta
    output.spiral_tau = spiral_tau
    output.roll_tau = roll_tau    
    
    return output
开发者ID:thearn,项目名称:SUAVE,代码行数:87,代码来源:lateral_directional.py


注:本文中的SUAVE.Structure.Data.dutch_zeta方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。