当前位置: 首页>>代码示例>>Python>>正文


Python NeuralNetwork.train方法代码示例

本文整理汇总了Python中NeuralNetwork.NeuralNetwork.train方法的典型用法代码示例。如果您正苦于以下问题:Python NeuralNetwork.train方法的具体用法?Python NeuralNetwork.train怎么用?Python NeuralNetwork.train使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在NeuralNetwork.NeuralNetwork的用法示例。


在下文中一共展示了NeuralNetwork.train方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: exo67

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import train [as 别名]
def exo67():
    print("\n\n>>EXERCICE 6 et 7 : Calcul matriciel")
    print(" --- K=1 ---")
    #Xtrain, ytrain, Xvalid, yvalid, Xtest, ytest = utils.readMoonFile()
    Xtrain = [[30, 20, 40, 50], [25, 15, 35, 45]]
    ytrain = [0,0]
    default_h = 2
    nn = NeuralNetwork(len(Xtrain[0]), default_h, utils.getClassCount(ytrain), K=1, wd=0)
    nne = NeuralNetworkEfficient(len(Xtrain[0]), default_h, utils.getClassCount(ytrain), K=1, wd=0)
    nne._w1 = nn._w1 # trick pour que l'aleatoire soit egale
    nne._w2 = nn._w2
    nn.train(Xtrain,ytrain,1)
    nne.train(Xtrain,ytrain,1)
    utils.compareNN(nn,nne)
    print(" --- K=10 ---")
    Xtrain = [[30, 20, 40, 50], [25, 15, 35, 45],[30, 76, 45, 44],[89, 27, 42, 52],[30, 24, 44, 53],[89, 25, 45, 50],[30, 20, 40, 50],[30, 65, 47, 50],[30, 34, 40, 50],[39, 20, 29, 58]]
    ytrain = [0,0,0,0,0,0,0,0,0,0]
    default_h = 2
    nn = NeuralNetwork(len(Xtrain[0]), default_h, utils.getClassCount(ytrain), K=10, wd=0)
    nne = NeuralNetworkEfficient(len(Xtrain[0]), default_h, utils.getClassCount(ytrain), K=10, wd=0)
    nne._w1 = nn._w1 # trick pour que l'aleatoire soit egale
    nne._w2 = nn._w2
    nn.train(Xtrain,ytrain,1)
    nne.train(Xtrain,ytrain,1)
    utils.compareNN(nn,nne,10)
开发者ID:PierreGe,项目名称:neural-network,代码行数:27,代码来源:main.py

示例2: accuracy

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import train [as 别名]
 def accuracy(self, number_layers, numbers_neurons, learning_rate):
     """Returns the accuracy of a neural network associated with an Individual"""
     net = NeuralNetwork(number_layers, numbers_neurons, learning_rate, X_train=self.dataset.X_train, Y_train=self.dataset.Y_train, X_test=self.dataset.X_test, Y_test=self.dataset.Y_test)
     #train neural NeuralNetwork
     net.train()
     #calcule accurate
     acc = net.classify()
     #set AUC
     self.__auc = net.get_auc()
     return acc
开发者ID:victorddiniz,项目名称:DecodingBrainSignalsProject,代码行数:12,代码来源:Individual.py

示例3: test

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import train [as 别名]
def test(base_directory, ignore_word_file, filtered, nb_hidden_neurons, nb_max_iteration):
    print("post reading...")
    pr = PostReader(base_directory, ignore_word_file, filtered)

    print("creating neural network...")
    nn = NeuralNetwork(pr.get_word_set(), nb_hidden_neurons, nb_max_iteration)

    print("training...")
    training_set = pr.get_training_set()
    t0 = time.clock()
    nb_iteration = nn.train(training_set)
    training_time = time.clock() - t0

    print("verification...")
    t0 = time.clock()
    verification_set = pr.get_verification_set()
    verification_time = time.clock() - t0
    nb_correct = 0
    for msg in verification_set:
        final = NeuralNetwork.threshold(nn.classify(msg[0]))
        if final == msg[1]:
            nb_correct += 1

    print("=======================")
    print("training set length    : %s" % len(training_set))
    print("nb hidden neurons      : %s" % nb_hidden_neurons)
    print("nb max iterations      : %s" % nb_max_iteration)
    print("nb iterations          : %s" % nb_iteration)
    print("verification set length: %s posts" % len(verification_set))
    print("nb correct classified  : %s posts" % nb_correct)
    print("rate                   : %i %%" % (nb_correct / len(verification_set) * 100))
    print("training time          : %i s" % training_time)
    print("verification time      : %i s" % verification_time)
    print("=======================")
    print("")
开发者ID:maeberli,项目名称:ClassificationPosts,代码行数:37,代码来源:ClassificationPosts.py

示例4: exo8

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import train [as 别名]
def exo8():
    print("\n\n>>EXERCICE 8 MNIST")
    Xtrain, ytrain, Xvalid, yvalid, Xtest, ytest = utils.readMNISTfile()
    default_h = 30
    maxIter = 1
    neuralNetwork = NeuralNetwork(len(Xtrain[0]), default_h, utils.getClassCount(ytrain),K=100)
    neuralNetworkEfficient = NeuralNetworkEfficient(len(Xtrain[0]), default_h, utils.getClassCount(ytrain),K=100)
    neuralNetworkEfficient._w1 = neuralNetwork._w1
    neuralNetworkEfficient._w2 = neuralNetwork._w2
    print("--- Reseau de depart ---")
    t1 = datetime.now()
    neuralNetwork.train(Xtrain, ytrain, maxIter)
    t2 = datetime.now()
    delta = t2 - t1
    print("Cela a mis : " + str(delta.total_seconds()) + " secondes")
    print("--- Reseau optimise ---")
    t1 = datetime.now()
    neuralNetworkEfficient.train(Xtrain, ytrain, maxIter)
    t2 = datetime.now()
    delta = t2 - t1
    print("Cela a mis : " + str(delta.total_seconds()) + " secondes")
开发者ID:PierreGe,项目名称:neural-network,代码行数:23,代码来源:main.py

示例5: NeuralNetworkXORTestcase

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import train [as 别名]
class NeuralNetworkXORTestcase(unittest.TestCase):
    def setUp(self):
        self.nn = NeuralNetwork(['a', 'b'], 2)

        self.nn.hidden_neurons[0].input_weights['a'] = 1.0
        self.nn.hidden_neurons[0].input_weights['b'] = 1.0
        self.nn.hidden_neurons[0].bias = 0.0

        self.nn.hidden_neurons[1].input_weights['a'] = 1.0
        self.nn.hidden_neurons[1].input_weights['b'] = 1.0
        self.nn.hidden_neurons[1].bias = 0.0

        self.nn.final_neuron.input_weights[0] = -1
        self.nn.final_neuron.input_weights[1] = 1
        self.nn.final_neuron.bias = 0.0

    def test_classifiy(self):
        self.assertAlmostEquals(self.nn.classify({'a': 1.0, 'b': 0.0}), 1.0, 5)
        self.assertAlmostEquals(self.nn.classify({'a': 0.0, 'b': 1.0}), 1.0, 5)
        self.assertAlmostEquals(self.nn.classify({'a': 1.0, 'b': 1.0}), 0.0, 5)
        self.assertAlmostEquals(self.nn.classify({'a': 0.0, 'b': 0.0}), 0.0, 5)


    def test_train(self):
        self.nn = NeuralNetwork(['a', 'b'], 2)
        self.nn.train([[{'a': 1.0, 'b': 0.0}, 1.0]])
        self.nn.train([[{'a': 0.0, 'b': 1.0}, 1.0]])
        self.nn.train([[{'a': 1.0, 'b': 0.0}, 1.0]])
        self.nn.train([[{'a': 0.0, 'b': 1.0}, 1.0]])
        self.nn.train([[{'a': 1.0, 'b': 0.0}, 1.0]])
        self.nn.train([[{'a': 0.0, 'b': 1.0}, 1.0]])
        self.nn.train([[{'a': 1.0, 'b': 0.0}, 1.0]])
        self.nn.train([[{'a': 0.0, 'b': 1.0}, 1.0]])


        self.assertAlmostEquals(self.nn.classify({'a': 1.0, 'b': 0.0}), 1.0, 5)
        self.assertAlmostEquals(self.nn.classify({'a': 0.0, 'b': 1.0}), 1.0, 5)
        self.assertAlmostEquals(self.nn.classify({'a': 1.0, 'b': 1.0}), 0.0, 5)
        self.assertAlmostEquals(self.nn.classify({'a': 0.0, 'b': 0.0}), 0.0, 5)


        self.nn.hidden_neurons[0].input_weights
开发者ID:maeberli,项目名称:ClassificationPosts,代码行数:44,代码来源:NeuralNetworkTestcase.py

示例6: Normalize

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import train [as 别名]
        dataColumn = Normalize(dataColumn)
        length = len(dataColumn)
        InputLayer.append(dataColumn)
        dataColumn = []
    return InputLayer,length

def Normalize(dataColumn):
    #print dataColumn
    newDataColumn = []
    maximum = max(dataColumn)
    minimum = min(dataColumn)
    for each in dataColumn: 
        norm = (each - minimum)/(maximum-minimum)
        newDataColumn.append(norm)
        #print norm
    return newDataColumn


InputArray,length = getData()
OutputLayer = np.array([InputArray[1]])
ones = [1]*length
#InputLayer = np.array([InputArray[0],InputArray[2],InputArray[3],ones])
InputLayer = np.array([InputArray[0],ones])
InputLayer = InputLayer.T
y = OutputLayer.T

nn = NeuralNetwork(4,4)
nn.declareInput(InputLayer)
nn.declareTarget(y)
nn.train(1000000)
开发者ID:shashwat14,项目名称:Neural-Network,代码行数:32,代码来源:TrainTheNetwork.py

示例7:

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import train [as 别名]
# 	n_kerns=256,
# 	height=5,
# 	width=5
#)

# Add fc layer
nn.add(
	'Convolution',
	n_kerns=115,
	height=12,
	width=12
)

nn.add(
	'Pool',
	shape=(2,2)
)

nn.add(
	'FCLayer',
	n_out=500
)

nn.compile()
nn.set_ttv_data(dataset)
nn.train()




开发者ID:tkaplan,项目名称:MLTextParser,代码行数:28,代码来源:NN_Test.py

示例8: DigitClassifier

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import train [as 别名]
class DigitClassifier(tkinter.Tk):
    def __init__(self):
        tkinter.Tk.__init__(self)
        self.nn = NeuralNetwork(784, 300, 10)

        self.background = tkinter.Canvas(self, width = 308, height = 308)
        self.background.config(background="black")
        self.input_canvas = InputCanvas(self, width = 300, height = 300)
        self.result_label = tkinter.Label(self, text='')
        self.recog_button = tkinter.Button(self, text='Recognize', command=self.recognize)
        self.clear_button = tkinter.Button(self, text='Clear', command=self.input_canvas.clear)

        self.background.pack()
        self.input_canvas.place(x=4, y=4)
        self.result_label.pack()
        self.recog_button.pack()
        self.clear_button.pack()

    def train_nn(self, epochs=100000, edit_image=False):
        """ニューラルネットワークを訓練する"""
        import Mnist
        labels = Mnist.trainLabels
        images = Mnist.trainImages
        inputs, targets = [], []
        for _ in range(epochs):
            i = int(random.random() * len(labels))
            target = np.zeros(10)
            if edit_image:
                # 訓練データを加工する
                img = Image.fromarray(images[i])
                new_img = Image.new('L', (28, 28))
                new_img.paste(img.rotate(random.uniform(-45.0, 45.0)),
                              (random.randint(-5.0, 5.0), random.randint(-5.0, 5.0)))
                image = np.asarray(new_img).ravel()
            else:
                # 加工なし
                image = images[i].ravel()
            inputs.append(image/255.0)
            target[labels[i]] = 1.0
            targets.append(target)
        print("start training...")
        self.nn.train(np.array(inputs), np.array(targets), n=0.01)

        labels = Mnist.testLabels
        images = Mnist.testImages
        inputs, targets = [], []
        for i in range(len(labels)):
            target = np.zeros(10)
            inputs.append(images[i].ravel() / 255.0)
            target[labels[i]] = 1.0
            targets.append(target)
        print("start testing...")
        results = self.nn.test(np.array(inputs), np.array(targets))
        #print(results)

        overall = np.zeros((10, 10), dtype=int)
        correct = 0
        for result, target in zip(results, targets):
            ri = max(enumerate(result), key=lambda x: x[1])[0]
            ti = max(enumerate(target), key=lambda x: x[1])[0]
            overall[ti, ri] += 1
            if ti == ri:
                correct += 1
        print(overall)
        print(float(correct)/len(labels))

        # 訓練後のパラメータを保存する
        np.save('parameters/w1_2.npy', self.nn.w1_2)
        np.save('parameters/w2_3.npy', self.nn.w2_3)

    def load_nn_parameters(self):
        # パラメータを読み込む
        self.nn.w1_2 = np.load('parameters/w1_2.npy')
        self.nn.w2_3 = np.load('parameters/w2_3.npy')

    def recognize(self):
        # キャンバスに書き込まれた数字を認識する
        img = self.input_canvas.getImage().filter(ImageFilter.BLUR).convert('L')
        img.thumbnail((28, 28), getattr(Image, 'ANTIALIAS'))
        img = img.point(lambda x: 255 - x)
        input = np.asarray(img).ravel()
        result = self.nn.test([input / 255.0], np.zeros(10))[0]
        num = max(enumerate(result), key=lambda x: x[1])[0]
        self.result_label.configure(text = str(num))
        print(num, result)
开发者ID:ommadawn46,项目名称:DigitClassifier,代码行数:87,代码来源:DigitClassifier.py

示例9: YourFaceSoundsFamiliar

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import train [as 别名]
class YourFaceSoundsFamiliar(BaseWidget):
    def __init__(self):
        super(YourFaceSoundsFamiliar,self).__init__('Your Face Sounds Familiar')
        #Predict Tab
        self._imagepath = ControlText('Path')
        self._browsebuttonpredict = ControlButton('Browse')
        self._nametopred = ControlText('Name')
        self._selectfile = ControlFile()
        self._selectfile.changed = self.__change_path
        self._predictimage = ControlImage()
        self._predictbutton = ControlButton('Predict')
        self._predicteddetails = ControlLabel('Details')
        self._name = ControlLabel('Recognized Name: ')
        self._fscore = ControlLabel('FScore: ')
        self._predictbutton.value = self.__predictbAction

        #Train Tab
        self._pername = ControlText('Name')
        self._selectdir = ControlDir()
        self._selectdir.changed = self.__change_path_dir
        self._imagetotrain = ControlImage()
        # self._imagetotest = ControlImage()
        self._totrainlist = ControlList("To Train",defaultValue=[])
        self.traininglist = self._totrainlist.value
        self._addtolistbutton = ControlButton('Add')
        self._addtolistbutton.value = self.__addtolistbAction
        self._trainbutton = ControlButton('Train')
        self._trainbutton.value = self.__trainbAction

        #Formsets
        self._formset = [{
            'Predict':['_selectfile','=','_nametopred','=','_predictimage',
                       '=','_predictbutton','=',
                       '_predicteddetails','=','_name',
                       '=','_fscore'],
            'Train': ['_pername', '=', '_selectdir',
                      '=', '_imagetotrain', '=', '_addtolistbutton','=' ,
                      '_totrainlist', '=', '_trainbutton']
            }]
        self.trainingsetall = []
        self.nn = self.__init_nn()
        self.learned = {}
        self._k = 4
        self._trainingPercent = 0.8
        self.learned = self.__load_learned()
        self.cross_validation_set = [np.empty((0,0))]*self._k
        self.cross_validation_set_y = [np.empty((0,0))]*self._k
        self.test_set = np.empty((0, 0))
        self.testing_y = np.empty((0, 0))
        self.training_X = [np.empty((0, 900))] * self._k
        self.training_y = [np.empty((0, 1))] * self._k

        self.X = np.empty((0, 0))

    def __load_learned(self):
        try:
            with open('learned.json') as learned_file:
                for line in learned_file:
                    learned = json.loads(line)
                    for key in learned.keys():
                        self._totrainlist.__add__([key])
        except IOError:
            learned = {}

        config = {'input_size': 30 * 30,  'hidden_size': 30 * 30, 'lambda': 1, 'num_labels': (len(learned))}
        self.nn = NeuralNetwork(config=config)

        return learned

    def __predictbAction(self):
        predictset_filename = 'predictset.csv'
        np.savetxt(predictset_filename,self.predictset, delimiter=',')
        prediction = np.argmax(self.nn.predict(self.predictset)) + 1
        for k, v in self.learned.iteritems():
            if prediction == v:
                self._name.value = k



    def __init_nn(self):
        nn = NeuralNetwork()
        return nn

    def __change_path(self):
        image = cv2.imread(self._selectfile.value)
        self._predictimage.value = []
        self._predictimage.value = FaceDetection().drawrectangle(image)
        resizedimage = FaceDetection().resizeimageb(self._predictimage.value)
        croppedimage = FaceDetection().cropface(resizedimage)
        resizedcroppedimage = FaceDetection().resizeimagea(croppedimage)
        self.predictset = np.array(resizedcroppedimage[1]).flatten()

    def __change_path_dir(self):
        name = self._selectdir.value
        name = name.split('/')
        self._pername.value = name.pop(len(name)-1)
        self._imagetotrain.value = []
        # self._imagetotest.value = []
        listofimages = os.listdir(self._selectdir.value)
        listofimages = sorted(listofimages)
#.........这里部分代码省略.........
开发者ID:LucidComplex,项目名称:python-face-recognition,代码行数:103,代码来源:YourFaceSoundsFamiliar.py

示例10: contrast_normalize

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import train [as 别名]
# Assumes "train.mat" is the training set from MNIST
train_data = sc.io.loadmat('dataset/train.mat')
train_images = train_data['train_images']
train_labels = train_data['train_labels']

side_length = train_images.shape[0]
preprocessed_images = np.transpose(train_images.reshape((side_length*side_length,-1)))
preprocessed_images = contrast_normalize(preprocessed_images)
training_features, training_labels, validation_features, validation_labels = split_data(preprocessed_images, train_labels, 1/6.0)

test_data = sc.io.loadmat('dataset/test.mat')
test_images = test_data['test_images']
preprocessed_test_images = test_images.reshape((10000, 784))
preprocessed_test_images = contrast_normalize(preprocessed_test_images)

# This actually isn't a great setup for MNIST, multiple hidden layers aren't useful unless you're doing convolutions. 
example_net = NeuralNetwork(cost_func = cross_entropy, cost_deriv = cross_entropy_deriv, 
                                      activation_func = ReLU, activ_deriv = ReLU_deriv,
                                      output_func = softmax, output_deriv = softmax_deriv,
		hid_layer_sizes=[200,200], num_inputs = 784, num_outputs=10, learning_rate = 1e-2, stopping_threshold=-1,
		momentum_rate = 0.9, batch_size = 50, decay_rate = 0.5, decay_frequency = 20,
		cost_calc_freq = 1000, snapshot_frequency = -1,
		snapshot_name = "./snapshots/multilayer_softmax_ReLU", max_iterations = 1e6, relax_targets=False)

example_net.train(training_features, training_labels)

validation_predictions = example_net.predict(validation_features)
benchmark(validation_predictions,validation_labels)
final_predictions = example_net.predict(preprocessed_test_images)
开发者ID:michaelhzhang,项目名称:Neural-Nets-For-Classification,代码行数:31,代码来源:example.py

示例11: __init__

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import train [as 别名]
class Classifier:

    def __init__(self, classifier_type, **kwargs):
        """
        Initialize a classifier for managing learning model.
        Args:
            classifier_type: the type of learning model. e.g. neural_network
            **kwargs: store parameter in a dictionary
        """
        self.classifier_type = classifier_type
        self.params = kwargs

        self.clf = None
        self.file = open('result/trial_' + str(datetime.datetime.today()).replace("/", "_", -1) + ".txt", 'w', 0)

    def train(self, training_data, testData, classNum, batchSize):
        """
        Create a learning model. Train the model with the training data. Print the training accuracy every certain iterations.
        If the learning rate is not chosen appropriately, let the user to enter a new
        """
        # find the numbers for feature and label
        featureNum = training_data.shape[1] - 1

        # #this will find all the unique labels automatically, but will have problem when training data is lacking some labels
        # labelNum = len(np.unique(training_data[:, :1]))
        labelNum = classNum

        # get the number of nodes for each layer
        if "hidden_layer" in self.params and self.params["hidden_layer"] is not None:
            nodeNum = [featureNum] + self.params["hidden_layer"] + [labelNum]
        else:
            nodeNum = [featureNum, featureNum * 2, labelNum]

        # get the mode for initializing the weight
        if "weightInitMode" in self.params and self.params["weightInitMode"] is not None:
            weightInitMode = self.params["weightInitMode"]
        else:
            weightInitMode = None

        # get the momentum factor
        if "momentumFactor" in self.params:
            momentumFactor = self.params["momentumFactor"]
        else:
            momentumFactor = 0.0

        self.clf = NeuralNetwork(training_data, nodeNum, weightInitMode, momentumFactor)
        iteration = 5
        totalIter = 0
        testSize  = 100000
        while iteration > 0:

            if iteration < 10:
                self.clf.train(iteration, batchSize)
                totalIter += iteration
                print "---------- Settings ----------"
                print "Examples                 :", training_data.shape[0]
                print "Batch size               :", batchSize
                print "Alpha                    :", self.clf.getAlpha()
                print "Momentum factor          :", momentumFactor
                print "# of Nodes in all layers :", nodeNum
                print "Training iteration so far:", totalIter
                self.file.write("\n")
                self.file.write("---------- Settings ----------" + "\n")
                self.file.write("Examples                 : " + str(training_data.shape[0]) + "\n")
                self.file.write("Batch size               : " + str(batchSize) + "\n")
                self.file.write("Alpha                    : " + str(self.clf.getAlpha()) + "\n")
                self.file.write("Momentum factor          : " + str(momentumFactor) + "\n")
                self.file.write("# of Nodes in all layers : " + str(nodeNum) + "\n")
                self.file.write("Training iteration so far: " + str(totalIter) + "\n")
                self.test(training_data, "training")
                self.test(testData, "testing")
                iteration = 0

            while iteration >= testSize:
                self.clf.train(testSize, batchSize)
                totalIter += testSize
                print "---------- Settings ----------"
                print "Examples                 :", training_data.shape[0]
                print "Batch size               :", batchSize
                print "Alpha                    :", self.clf.getAlpha()
                print "Momentum factor          :", momentumFactor
                print "# of Nodes in all layers :", nodeNum
                print "Training iteration so far:", totalIter
                self.file.write("\n")
                self.file.write("---------- Settings ----------" + "\n")
                self.file.write("Examples                 : " + str(training_data.shape[0]) + "\n")
                self.file.write("Batch size               : " + str(batchSize) + "\n")
                self.file.write("Alpha                    : " + str(self.clf.getAlpha()) + "\n")
                self.file.write("Momentum factor          : " + str(momentumFactor) + "\n")
                self.file.write("# of Nodes in all layers : " + str(nodeNum) + "\n")
                self.file.write("Training iteration so far: " + str(totalIter) + "\n")
                self.test(training_data, "training")
                self.test(testData, "testing")
                iteration -= testSize

            if iteration > 0:
                self.clf.train(iteration, batchSize)
                totalIter += iteration
                print "---------- Settings ----------"
                print "Examples                 :", training_data.shape[0]
#.........这里部分代码省略.........
开发者ID:jasonlingo,项目名称:Machine-Learning-Assignments,代码行数:103,代码来源:classifier.py


注:本文中的NeuralNetwork.NeuralNetwork.train方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。