当前位置: 首页>>代码示例>>Python>>正文


Python NeuralNetwork.predict方法代码示例

本文整理汇总了Python中NeuralNetwork.NeuralNetwork.predict方法的典型用法代码示例。如果您正苦于以下问题:Python NeuralNetwork.predict方法的具体用法?Python NeuralNetwork.predict怎么用?Python NeuralNetwork.predict使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在NeuralNetwork.NeuralNetwork的用法示例。


在下文中一共展示了NeuralNetwork.predict方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: NeuralNetwork

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import predict [as 别名]
import numpy as np

from NeuralNetwork import NeuralNetwork

nn = NeuralNetwork([2, 2, 1], 'tanh')
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
nn.fit(X, y)
for i in [[0, 0], [0, 1], [1, 0], [1, 1]]:
    print(i, nn.predict(i))
开发者ID:sjqzhang,项目名称:machine_learning,代码行数:12,代码来源:non_lineartest.py

示例2: load_digits

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import predict [as 别名]
# 每个图片8x8  识别数字:0,1,2,3,4,5,6,7,8,9

import numpy as np
from sklearn.datasets import load_digits
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import LabelBinarizer
from NeuralNetwork import NeuralNetwork
from sklearn.cross_validation import train_test_split


digits = load_digits()
X = digits.data
y = digits.target
X -= X.min()  # normalize the values to bring them into the range 0-1
X /= X.max()

nn = NeuralNetwork([64, 100, 10], 'logistic')
X_train, X_test, y_train, y_test = train_test_split(X, y)
labels_train = LabelBinarizer().fit_transform(y_train)
labels_test = LabelBinarizer().fit_transform(y_test)
print "start fitting"
nn.fit(X_train, labels_train, epochs=3000)
predictions = []
for i in range(X_test.shape[0]):
    o = nn.predict(X_test[i])
    predictions.append(np.argmax(o))
print confusion_matrix(y_test, predictions)
print classification_report(y_test, predictions)

开发者ID:AugustLONG,项目名称:ML04,代码行数:30,代码来源:handwrittennumber.py

示例3: YourFaceSoundsFamiliar

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import predict [as 别名]
class YourFaceSoundsFamiliar(BaseWidget):
    def __init__(self):
        super(YourFaceSoundsFamiliar,self).__init__('Your Face Sounds Familiar')
        #Predict Tab
        self._imagepath = ControlText('Path')
        self._browsebuttonpredict = ControlButton('Browse')
        self._nametopred = ControlText('Name')
        self._selectfile = ControlFile()
        self._selectfile.changed = self.__change_path
        self._predictimage = ControlImage()
        self._predictbutton = ControlButton('Predict')
        self._predicteddetails = ControlLabel('Details')
        self._name = ControlLabel('Recognized Name: ')
        self._fscore = ControlLabel('FScore: ')
        self._predictbutton.value = self.__predictbAction

        #Train Tab
        self._pername = ControlText('Name')
        self._selectdir = ControlDir()
        self._selectdir.changed = self.__change_path_dir
        self._imagetotrain = ControlImage()
        # self._imagetotest = ControlImage()
        self._totrainlist = ControlList("To Train",defaultValue=[])
        self.traininglist = self._totrainlist.value
        self._addtolistbutton = ControlButton('Add')
        self._addtolistbutton.value = self.__addtolistbAction
        self._trainbutton = ControlButton('Train')
        self._trainbutton.value = self.__trainbAction

        #Formsets
        self._formset = [{
            'Predict':['_selectfile','=','_nametopred','=','_predictimage',
                       '=','_predictbutton','=',
                       '_predicteddetails','=','_name',
                       '=','_fscore'],
            'Train': ['_pername', '=', '_selectdir',
                      '=', '_imagetotrain', '=', '_addtolistbutton','=' ,
                      '_totrainlist', '=', '_trainbutton']
            }]
        self.trainingsetall = []
        self.nn = self.__init_nn()
        self.learned = {}
        self._k = 4
        self._trainingPercent = 0.8
        self.learned = self.__load_learned()
        self.cross_validation_set = [np.empty((0,0))]*self._k
        self.cross_validation_set_y = [np.empty((0,0))]*self._k
        self.test_set = np.empty((0, 0))
        self.testing_y = np.empty((0, 0))
        self.training_X = [np.empty((0, 900))] * self._k
        self.training_y = [np.empty((0, 1))] * self._k

        self.X = np.empty((0, 0))

    def __load_learned(self):
        try:
            with open('learned.json') as learned_file:
                for line in learned_file:
                    learned = json.loads(line)
                    for key in learned.keys():
                        self._totrainlist.__add__([key])
        except IOError:
            learned = {}

        config = {'input_size': 30 * 30,  'hidden_size': 30 * 30, 'lambda': 1, 'num_labels': (len(learned))}
        self.nn = NeuralNetwork(config=config)

        return learned

    def __predictbAction(self):
        predictset_filename = 'predictset.csv'
        np.savetxt(predictset_filename,self.predictset, delimiter=',')
        prediction = np.argmax(self.nn.predict(self.predictset)) + 1
        for k, v in self.learned.iteritems():
            if prediction == v:
                self._name.value = k



    def __init_nn(self):
        nn = NeuralNetwork()
        return nn

    def __change_path(self):
        image = cv2.imread(self._selectfile.value)
        self._predictimage.value = []
        self._predictimage.value = FaceDetection().drawrectangle(image)
        resizedimage = FaceDetection().resizeimageb(self._predictimage.value)
        croppedimage = FaceDetection().cropface(resizedimage)
        resizedcroppedimage = FaceDetection().resizeimagea(croppedimage)
        self.predictset = np.array(resizedcroppedimage[1]).flatten()

    def __change_path_dir(self):
        name = self._selectdir.value
        name = name.split('/')
        self._pername.value = name.pop(len(name)-1)
        self._imagetotrain.value = []
        # self._imagetotest.value = []
        listofimages = os.listdir(self._selectdir.value)
        listofimages = sorted(listofimages)
#.........这里部分代码省略.........
开发者ID:LucidComplex,项目名称:python-face-recognition,代码行数:103,代码来源:YourFaceSoundsFamiliar.py

示例4: load_digits

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import predict [as 别名]
# import pylab as pl
# pl.gray()
# pl.matshow(digits.images[0])
# pl.show()


from sklearn.preprocessing import LabelBinarizer
from NeuralNetwork import NeuralNetwork
from sklearn.cross_validation import train_test_split
from sklearn.datasets import load_digits
import numpy as np
from sklearn.metrics import confusion_matrix,classification_report

digits = load_digits()
x= digits.data
y = digits.target
x -= x.min()
x /= x.max()

nn = NeuralNetwork([64,100,10],"logistic")
x_train,x_test,y_train,y_test = train_test_split(x,y)
label_train = LabelBinarizer().fit_transform(y_train)
label_test = LabelBinarizer().fit_transform(y_test)
print("start fitting..")
predictions = []
nn.fit(x_train, label_train, epochs=10000)
for i in range(x_test.shape[0]):
    o = nn.predict(x_test[i])
    predictions.append(np.argmin(o))
print confusion_matrix(y_test,predictions)
print classification_report(y_test,predictions)
开发者ID:sjqzhang,项目名称:machine_learning,代码行数:33,代码来源:digitalReconginize.py

示例5: contrast_normalize

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import predict [as 别名]
# Assumes "train.mat" is the training set from MNIST
train_data = sc.io.loadmat('dataset/train.mat')
train_images = train_data['train_images']
train_labels = train_data['train_labels']

side_length = train_images.shape[0]
preprocessed_images = np.transpose(train_images.reshape((side_length*side_length,-1)))
preprocessed_images = contrast_normalize(preprocessed_images)
training_features, training_labels, validation_features, validation_labels = split_data(preprocessed_images, train_labels, 1/6.0)

test_data = sc.io.loadmat('dataset/test.mat')
test_images = test_data['test_images']
preprocessed_test_images = test_images.reshape((10000, 784))
preprocessed_test_images = contrast_normalize(preprocessed_test_images)

# This actually isn't a great setup for MNIST, multiple hidden layers aren't useful unless you're doing convolutions. 
example_net = NeuralNetwork(cost_func = cross_entropy, cost_deriv = cross_entropy_deriv, 
                                      activation_func = ReLU, activ_deriv = ReLU_deriv,
                                      output_func = softmax, output_deriv = softmax_deriv,
		hid_layer_sizes=[200,200], num_inputs = 784, num_outputs=10, learning_rate = 1e-2, stopping_threshold=-1,
		momentum_rate = 0.9, batch_size = 50, decay_rate = 0.5, decay_frequency = 20,
		cost_calc_freq = 1000, snapshot_frequency = -1,
		snapshot_name = "./snapshots/multilayer_softmax_ReLU", max_iterations = 1e6, relax_targets=False)

example_net.train(training_features, training_labels)

validation_predictions = example_net.predict(validation_features)
benchmark(validation_predictions,validation_labels)
final_predictions = example_net.predict(preprocessed_test_images)
开发者ID:michaelhzhang,项目名称:Neural-Nets-For-Classification,代码行数:31,代码来源:example.py

示例6: __init__

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import predict [as 别名]

#.........这里部分代码省略.........
                print "Momentum factor          :", momentumFactor
                print "# of Nodes in all layers :", nodeNum
                print "Training iteration so far:", totalIter
                self.file.write("\n")
                self.file.write("---------- Settings ----------" + "\n")
                self.file.write("Examples                 : " + str(training_data.shape[0]) + "\n")
                self.file.write("Batch size               : " + str(batchSize) + "\n")
                self.file.write("Alpha                    : " + str(self.clf.getAlpha()) + "\n")
                self.file.write("Momentum factor          : " + str(momentumFactor) + "\n")
                self.file.write("# of Nodes in all layers : " + str(nodeNum) + "\n")
                self.file.write("Training iteration so far: " + str(totalIter) + "\n")
                self.test(training_data, "training")
                self.test(testData, "testing")
                iteration = 0

            print ""
            restart = raw_input("Do you want to restart? (Y/N)")
            if restart.upper() == "Y":
                totalIter = 0
                print "Current Alpha is", self.clf.getAlpha()
                alpha = raw_input("What alpha ?")
                self.clf.setAlpha(float(alpha))
                self.clf.initTheta()
                self.file.write("\n")
                self.file.write("*****************************************************\n")
                self.file.write("Re-initialize trail with alpha = " + str(alpha) + "\n")
                self.file.write("*****************************************************\n")

            print ""
            iteration = raw_input("How many iteration do you want to train the model?")
            try:
                iteration = int(iteration)
            except:
                iteration = raw_input("Please input an integer")
                iteration = 1
        print "Total training iterations:", totalIter

    def predict(self, data):
        """

        """
        return self.clf.predict(data)

    def test(self, test_data, mode):
        """

        """
        correct = 0
        countPrediction = {}
        countCorrect = {}
        countTotal = Counter(list(test_data[:, 0]))
        allPrediction = {}

        labels = np.unique(test_data[:, 0])
        for label in labels:
            countCorrect[label] = 0
            countPrediction[label] = 0
            allPrediction[label] = 0

        for e in test_data:
            label = e[0]
            pred_label = self.predict(e)
            if label == pred_label:
                correct += 1
                if e[0] in countCorrect:
                    countCorrect[e[0]] += 1
                else:
                    countCorrect[e[0]] = 1
            if pred_label in allPrediction:
                allPrediction[pred_label] += 1
            else:
                allPrediction[pred_label] = 1

            if pred_label in countPrediction:
                countPrediction[pred_label] += 1
            else:
                countPrediction[pred_label] = 1
        print "---------- Result ----------"
        print "Alpha is", self.clf.getAlpha()
        print "Count correct", countCorrect
        print "All predictions", allPrediction
        accuracy = float(correct) / len(test_data)
        print "The accuracy for", mode, "is", accuracy
        self.file.write("---------- Result ----------" + "\n")
        self.file.write("Alpha is " + str(self.clf.getAlpha()) + "\n")
        self.file.write("Count correct " + str(countCorrect) + "\n")
        self.file.write("All predictions " + str(allPrediction) + "\n")
        self.file.write("The accuracy for " + mode + " is " + str(accuracy) + "\n")

    def getAttrValue(self, ex):
        """
        Find the attribute values for each attribute.
        Args:
            ex: given examples
        Returns: a dictionary where the keys are the attribute indices and the values are the attribute values.
        """
        attrValue = {}
        for i in range(len(ex[0])):
            attrValue[i] = list(set([v for v in ex[:, i]]))
        return attrValue
开发者ID:jasonlingo,项目名称:Machine-Learning-Assignments,代码行数:104,代码来源:classifier.py

示例7: test_classification

# 需要导入模块: from NeuralNetwork import NeuralNetwork [as 别名]
# 或者: from NeuralNetwork.NeuralNetwork import predict [as 别名]
def test_classification():
    from sklearn.datasets import load_digits
    from sklearn.datasets import load_iris
    from sklearn.cross_validation import train_test_split
    from sklearn.preprocessing import LabelBinarizer
    from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
    digits = load_digits()
    iris = load_iris()
    breast = dt.load_breast_cancer()
    ocr = dt.load_ocr_train()
    ocr1 = dt.load_ocr_test()
    X = digits.data
    y = digits.target
    X -= X.min()     # normalize the values to bring them into the range 0-1
    X /= X.max()
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    labels_train = LabelBinarizer().fit_transform(y_train)
    labels_test = LabelBinarizer().fit_transform(y_test)
    print 'digits dataset'
    print 'MLP performance:'
    mlp = MLPClassifier()
    mlp.fit(X_train,labels_train)
    predictions = []
    for i in range(X_test.shape[0]):
        o = mlp.predict(X_test[i] )
        predictions.append(np.argmax(o))
    print confusion_matrix(y_test,predictions)
    print classification_report(y_test,predictions)
    print 'Perceptron performance'
    nn = NeuralNetwork([64,100,10],'tanh')
    nn.fit(X_train,labels_train,epochs=100)
    predictions = []
    for i in range(X_test.shape[0]):
        o = nn.predict(X_test[i] )
        predictions.append(np.argmax(o))
    print confusion_matrix(y_test,predictions)
    print classification_report(y_test,predictions)
    #################################################
    X = iris.data
    y = iris.target
    #X -= X.min()     # normalize the values to bring them into the range 0-1
    #X /= X.max()
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    labels_train = LabelBinarizer().fit_transform(y_train)
    labels_test = LabelBinarizer().fit_transform(y_test)
    print 'Iris dataset'
    print 'MLP performance'
    mlp = MLPClassifier()
    mlp.fit(X_train,labels_train)
    predictions = []
    for i in range(X_test.shape[0]):
        o = mlp.predict(X_test[i] )
        predictions.append(np.argmax(o))
    print confusion_matrix(y_test,predictions)
    print classification_report(y_test,predictions)
    print 'Perceptron performance'
    nn = NeuralNetwork([64,100,10],'tanh')
    nn.fit(X_train,labels_train,epochs=100)
    predictions = []
    for i in range(X_test.shape[0]):
        o = nn.predict(X_test[i] )
        predictions.append(np.argmax(o))
    print confusion_matrix(y_test,predictions)
    print classification_report(y_test,predictions)
    ####################################################
    X_train = breast['x_train']
    y_train = breast['y_train']
    X_test = breast['x_test']
    y_test = breast['y_test']
    X_train -= X_train.min()     # normalize the values to bring them into the range 0-1
    X_train /= X_train.max()
    labels_train = LabelBinarizer().fit_transform(y_train)
    labels_test = LabelBinarizer().fit_transform(y_test)
    print 'Breast cancer dataset'
    print 'MLP performance'
    mlp = MLPClassifier()
    mlp.fit(X_train,labels_train)
    predictions = []
    for i in range(X_test.shape[0]):
        o = mlp.predict(X_test[i] )
        predictions.append(np.argmax(o))
    print accuracy_score(labels_test,predictions)
    #print confusion_matrix(labels_test,predictions)
    print classification_report(labels_test,predictions)
    print 'Perceptron performance'
    nn = NeuralNetwork([64,100,10],'tanh')
    nn.fit(X_train,labels_train,epochs=100)
    predictions = []
    for i in range(X_test.shape[0]):
        o = nn.predict(X_test[i] )
        predictions.append(np.argmax(o))
    print confusion_matrix(labels_test,predictions)
    print classification_report(labels_test,predictions)
    ####################################################
    '''
开发者ID:kushalarora,项目名称:SupervisedMLAlgorithms,代码行数:97,代码来源:mlp.py


注:本文中的NeuralNetwork.NeuralNetwork.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。