当前位置: 首页>>代码示例>>Python>>正文


Python ExampleUtils.writeExamples方法代码示例

本文整理汇总了Python中Core.ExampleUtils.writeExamples方法的典型用法代码示例。如果您正苦于以下问题:Python ExampleUtils.writeExamples方法的具体用法?Python ExampleUtils.writeExamples怎么用?Python ExampleUtils.writeExamples使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Core.ExampleUtils的用法示例。


在下文中一共展示了ExampleUtils.writeExamples方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]
 def train(cls, examples, parameters, outputFile=None): #, timeout=None):
     """
     Train the SVM-multiclass classifier on a set of examples.
     
     @type examples: string (filename) or list (or iterator) of examples
     @param examples: a list or file containing examples in SVM-format
     @type parameters: a dictionary or string
     @param parameters: parameters for the classifier
     @type outputFile: string
     @param outputFile: the name of the model file to be written
     """
     timer = Timer()
     parameters = cls.getParams(parameters)
     
     # If examples are in a list, they will be written to a file for SVM-multiclass
     if type(examples) == types.ListType:
         print >> sys.stderr, "Training SVM-MultiClass on", len(examples), "examples"
         trainPath = self.tempDir+"/train.dat"
         examples = self.filterTrainingSet(examples)
         Example.writeExamples(examples, trainPath)
     else:
         print >> sys.stderr, "Training SVM-MultiClass on file", examples
         trainPath = cls.stripComments(examples)
     args = ["/home/jari/Programs/liblinear-1.5-poly2/train"]
     cls.__addParametersToSubprocessCall(args, parameters)
     if outputFile == None:
         args += [trainPath, "model"]
         logFile = open("svmmulticlass.log","at")
     else:
         args += [trainPath, outputFile]
         logFile = open(outputFile+".log","wt")
     rv = subprocess.call(args, stdout = logFile)
     logFile.close()
     print >> sys.stderr, timer.toString()
     return rv
开发者ID:jbjorne,项目名称:Tdevel,代码行数:37,代码来源:LibLinearPoly2Classifier.py

示例2: classify

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]
 def classify(self, examples, parameters=None):
     if type(examples) == types.StringType:
         testFilePath = examples
         predictions = []
         realClasses = []
         exampleFile = open(examples,"rt")
         for line in exampleFile.readlines():
             realClasses.append(int(line.split(" ",1)[0].strip()))
         exampleFile.close()
     elif type(examples) == types.ListType:
         examples, predictions = self.filterClassificationSet(examples, True)
         Example.writeExamples(examples, self.tempDir+"/test.dat")
         testFilePath = self.tempDir+"/test.dat"
     args = [self.classifyBin]
     if parameters != None:
         self.__addParametersToSubprocessCall(args, parameters)
     args += [testFilePath, self.tempDir+"/model", self.tempDir+"/predictions"]
     #print args
     subprocess.call(args, stdout = self.debugFile)
     os.remove(self.tempDir+"/model")
     predictionsFile = open(self.tempDir+"/predictions", "rt")
     lines = predictionsFile.readlines()
     predictionsFile.close()
     #predictions = []
     for i in range(len(lines)):
         if type(examples) == types.ListType:
             predictions.append( (examples[i],float(lines[i]),self.type,lines[i]) )
         else:
             predictions.append( ([None,realClasses[i]],float(lines[i]),self.type) )
     return predictions
开发者ID:jbjorne,项目名称:Tdevel,代码行数:32,代码来源:JoachimsSVMBase.py

示例3: test

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]
 def test(cls, examples, modelPath, output=None, parameters=None, timeout=None):
     if type(examples) == types.ListType:
         print >> sys.stderr, "Classifying", len(examples), "with All-True Classifier"
         examples, predictions = self.filterClassificationSet(examples, False)
         testPath = self.tempDir+"/test.dat"
         Example.writeExamples(examples, testPath)
     else:
         print >> sys.stderr, "Classifying file", examples, "with All-True Classifier"
         testPath = examples
         examples = Example.readExamples(examples,False)
     print >> sys.stderr, "Note! Classification must be binary"
     #examples, predictions = self.filterClassificationSet(examples, True)
     predictions = []
     for example in examples:
         #predictions.append( (example, example[1]) )
         predictions.append( [2] ) #[example[1]] )
     
     if output == None:
         output = "predictions"
     f = open(output, "wt")
     for p in predictions:
         f.write(str(p[0])+"\n")
     f.close()
         
     return predictions
开发者ID:DUT-LiuYang,项目名称:TEES,代码行数:27,代码来源:AllTrueClassifier.py

示例4: test

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]
 def test(cls, examples, modelPath, output=None, parameters=None, forceInternal=False): # , timeout=None):
     """
     Classify examples with a pre-trained model.
     
     @type examples: string (filename) or list (or iterator) of examples
     @param examples: a list or file containing examples in SVM-format
     @type modelPath: string
     @param modelPath: filename of the pre-trained model file
     @type parameters: a dictionary or string
     @param parameters: parameters for the classifier
     @type output: string
     @param output: the name of the predictions file to be written
     @type forceInternal: Boolean
     @param forceInternal: Use python classifier even if SVM Multiclass binary is defined in Settings.py
     """
     if forceInternal or Settings.SVMMultiClassDir == None:
         return cls.testInternal(examples, modelPath, output)
     timer = Timer()
     if type(examples) == types.ListType:
         print >> sys.stderr, "Classifying", len(examples), "with SVM-MultiClass model", modelPath
         examples, predictions = self.filterClassificationSet(examples, False)
         testPath = self.tempDir+"/test.dat"
         Example.writeExamples(examples, testPath)
     else:
         print >> sys.stderr, "Classifying file", examples, "with SVM-MultiClass model", modelPath
         testPath = cls.stripComments(examples)
         examples = Example.readExamples(examples,False)
     args = ["/home/jari/Programs/liblinear-1.5-poly2/predict"]
     if modelPath == None:
         modelPath = "model"
     if parameters != None:
         parameters = copy.copy(parameters)
         if parameters.has_key("c"):
             del parameters["c"]
         if parameters.has_key("predefined"):
             parameters = copy.copy(parameters)
             modelPath = os.path.join(parameters["predefined"][0],"classifier/model")
             del parameters["predefined"]
         self.__addParametersToSubprocessCall(args, parameters)
     if output == None:
         output = "predictions"
         logFile = open("svmmulticlass.log","at")
     else:
         logFile = open(output+".log","wt")
     args += [testPath, modelPath, output]
     #if timeout == None:
     #    timeout = -1
     #print args
     subprocess.call(args, stdout = logFile, stderr = logFile)
     predictionsFile = open(output, "rt")
     lines = predictionsFile.readlines()
     predictionsFile.close()
     predictions = []
     for i in range(len(lines)):
         predictions.append( [int(lines[i].split()[0])] + lines[i].split()[1:] )
         #predictions.append( (examples[i],int(lines[i].split()[0]),"multiclass",lines[i].split()[1:]) )
     print >> sys.stderr, timer.toString()
     return predictions
开发者ID:jbjorne,项目名称:Tdevel,代码行数:60,代码来源:LibLinearPoly2Classifier.py

示例5: classify

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]
 def classify(self, examples, parameters=None):
     examples, predictions = self.filterClassificationSet(examples, self.isBinary)
     ExampleUtils.writeExamples(examples, self.tempDir+"/test.dat")
     for i in range(len(examples)):
         if self.isBinary:
             predictedClass = self.model.predict(examples[i][2])
             predictions.append( (examples[i],predictedClass,"binary") )
         else:
             predictedClass = self.model.predict(examples[i][2])
             predictions.append( (examples[i],predictedClass,"multiclass") )
     return predictions
         
         
开发者ID:jbjorne,项目名称:Tdevel,代码行数:13,代码来源:LibSVMClassifier.py

示例6: train

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]
    def train(self, examples, parameters=None, outputDir=None):
        timeout = -1
        if type(examples) == types.StringType:
            trainFilePath = examples
        elif type(examples) == types.ListType:
            examples = self.filterTrainingSet(examples)
            parameters = copy.copy(parameters)
            if parameters.has_key("style"):
                if "no_duplicates" in parameters["style"]:
                    examples = Example.removeDuplicates(examples)
                del parameters["style"]
            Example.writeExamples(examples, self.tempDir+"/train.dat")
            trainFilePath = self.tempDir+"/train.dat"

        if parameters.has_key("timeout"):
            timeout = parameters["timeout"]
            del parameters["timeout"]        
        args = [self.trainBin]
        if parameters != None:
            self.__addParametersToSubprocessCall(args, parameters)
        args += [trainFilePath, self.tempDir+"/model"]
        return killableprocess.call(args, stdout = self.debugFile, timeout = timeout)
开发者ID:jbjorne,项目名称:Tdevel,代码行数:24,代码来源:JoachimsSVMBase.py

示例7: buildGraphKernelFeatures

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]
 def buildGraphKernelFeatures(self, sentenceGraph, path):
     edgeList = []
     depGraph = sentenceGraph.dependencyGraph
     pt = path
     for i in range(1, len(path)):
         edgeList.extend(depGraph.getEdges(pt[i], pt[i-1]))
         edgeList.extend(depGraph.getEdges(pt[i-1], pt[i]))
     edges = edgeList
     adjacencyMatrix, labels = self._buildAdjacencyMatrix(sentenceGraph, path, edges)
     node_count = 2*len(sentenceGraph.tokens) + len(sentenceGraph.dependencies)
     
     if sentenceGraph.sentenceElement.attrib["id"] == "LLL.d0.s0":
         adjacencyMatrixToHtml(adjacencyMatrix, labels, "LLL.d0.s0_adjacency_matrix.html")
     
     allPathsMatrix = self._prepareMatrix(adjacencyMatrix, node_count)
     self._matrixToFeatures(allPathsMatrix, labels)
     if sentenceGraph.sentenceElement.attrib["id"] == "LLL.d0.s0":
         adjacencyMatrixToHtml(allPathsMatrix, labels, "LLL.d0.s0_all_paths_matrix.html")
         commentLines = []
         commentLines.extend(self.featureSet.toStrings())
         example = ["example_"+self.entity1.attrib["id"]+"_"+self.entity2.attrib["id"],"unknown",self.features]
         ExampleUtils.writeExamples([example],"LLL.d0.s0_example.txt",commentLines)
开发者ID:DUT-LiuYang,项目名称:TEES,代码行数:24,代码来源:GraphKernelFeatureBuilder.py

示例8: train

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]
 def train(self, examples, parameters=None):
     self.isBinary = self.isBinaryProblem(examples)
     examples = self.filterTrainingSet(examples)
     ExampleUtils.writeExamples(examples, self.tempDir+"/train.dat")
     #prepare parameters:
     if parameters.has_key("c"):
         assert(not parameters.has_key("C"))
         parameters["C"] = parameters["c"]
         del parameters["c"]
     totalExamples = float(sum(self.classes.values()))
     weight_label = self.classes.keys()
     weight_label.sort()
     weight = []
     for k in weight_label:
         weight.append(1.0-self.classes[k]/totalExamples)
     libSVMparam = svm.svm_parameter(nr_weight = len(self.classes), weight_label=weight_label, weight=weight, **parameters)
     labels = []
     samples = []
     for example in examples:
         labels.append(example[1])
         samples.append(example[2])
     problem = svm.svm_problem(labels, samples)
     self.model = svm.svm_model(problem, libSVMparam)
开发者ID:jbjorne,项目名称:Tdevel,代码行数:25,代码来源:LibSVMClassifier.py

示例9: OptionParser

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]
    
    defaultAnalysisFilename = "/usr/share/biotext/ComplexPPI/BioInferForComplexPPIVisible.xml"
    optparser = OptionParser(usage="%prog [options]\nCreate an html visualization for a corpus.")
    optparser.add_option("-i", "--invariant", default=None, dest="invariant", help="Corpus in analysis format", metavar="FILE")
    optparser.add_option("-v", "--variant", default=None, dest="variant", help="Corpus in analysis format", metavar="FILE")
    (options, args) = optparser.parse_args()
    
    #invariantExamples = ExampleUtils.readExamples(os.path.join(options.invariant, "examples.txt"))
    variantExamples = ExampleUtils.readExamples(os.path.join(options.variant, "test-triggers.examples"))
    
    invariantFeatureSet = IdSet()
    invariantFeatureSet.load(os.path.join(options.invariant, "feature_names.txt"))
    invariantClassSet = IdSet()
    invariantClassSet.load(os.path.join(options.invariant, "class_names.txt"))

    variantFeatureSet = IdSet()
    variantFeatureSet.load(os.path.join(options.variant, "test-triggers.examples.feature_names"))
    variantClassSet = IdSet()
    variantClassSet.load(os.path.join(options.variant, "test-triggers.examples.class_names"))
    
    counter = ProgressCounter(len(variantExamples))
    for example in variantExamples:
        counter.update()
        example[1] = invariantClassSet.getId(variantClassSet.getName(example[1]))
        newFeatures = {}
        for k,v in example[2].iteritems():
            newFeatures[ invariantFeatureSet.getId(variantFeatureSet.getName(k)) ] = v
        example[2] = newFeatures
        
    ExampleUtils.writeExamples(variantExamples, os.path.join(options.variant, "realignedExamples.txt"))
开发者ID:jbjorne,项目名称:Tdevel,代码行数:32,代码来源:RealignExamples.py

示例10: test

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]
 def test(cls, examples, modelPath, output=None, parameters=None, forceInternal=False, classIds=None): # , timeout=None):
     """
     Classify examples with a pre-trained model.
     
     @type examples: string (filename) or list (or iterator) of examples
     @param examples: a list or file containing examples in SVM-format
     @type modelPath: string
     @param modelPath: filename of the pre-trained model file
     @type parameters: a dictionary or string
     @param parameters: parameters for the classifier
     @type output: string
     @param output: the name of the predictions file to be written
     @type forceInternal: Boolean
     @param forceInternal: Use python classifier even if SVM Multiclass binary is defined in Settings.py
     """
     if type(parameters) == types.StringType:
         parameters = splitParameters(parameters)
     timer = Timer()
     if type(examples) == types.ListType:
         print >> sys.stderr, "Classifying", len(examples), "with SVM-MultiClass model", modelPath
         examples, predictions = self.filterClassificationSet(examples, False)
         testPath = self.tempDir+"/test.dat"
         Example.writeExamples(examples, testPath)
     else:
         print >> sys.stderr, "Classifying file", examples, "with SVM-MultiClass model", modelPath
         testPath = examples
         examples = Example.readExamples(examples,False)
     if parameters != None:
         parameters = copy.copy(parameters)
         if parameters.has_key("c"):
             del parameters["c"]
         if parameters.has_key("predefined"):
             parameters = copy.copy(parameters)
             modelPath = os.path.join(parameters["predefined"][0],"classifier/model")
             del parameters["predefined"]
     # Read model
     if modelPath == None:
         modelPath = "model-multilabel"
     classModels = {}
     if modelPath.endswith(".gz"):
         f = gzip.open(modelPath, "rt")
     else:
         f = open(modelPath, "rt")
     thresholds = {}
     for line in f:
         key, value, threshold = line.split()
         classModels[key] = value
         if threshold != "None":
             thresholds[key] = float(threshold)
         else:
             thresholds[key] = 0.0
     f.close()
     mergedPredictions = []
     if type(classIds) == types.StringType:
         classIds = IdSet(filename=classIds)
     #print classModels
     print "Thresholds", thresholds
     classifierBin = Settings.SVMMultiClassDir+"/svm_multiclass_classify"
     print parameters
     if "classifier" in parameters and "svmperf" in parameters["classifier"]:
         classifierBin = Settings.SVMPerfDir+"/svm_perf_classify"
         parameters = copy.copy(parameters)
         del parameters["classifier"]
     for className in classIds.getNames():
         if className != "neg" and not "---" in className:
             classId = classIds.getId(className)
             if thresholds[str(className)] != 0.0:
                 print >> sys.stderr, "Classifying", className, "with threshold", thresholds[str(className)]
             else:
                 print >> sys.stderr, "Classifying", className
             args = [classifierBin]
             #self.__addParametersToSubprocessCall(args, parameters)
             classOutput = "predictions" + ".cls-" + className
             logFile = open("svmmulticlass" + ".cls-" + className + ".log","at")
             args += [testPath, classModels[str(className)], classOutput]
             print args
             subprocess.call(args, stdout = logFile, stderr = logFile)
             cls.addPredictions(classOutput, mergedPredictions, classId, len(classIds.Ids), threshold=thresholds[str(className)])
     print >> sys.stderr, timer.toString()
     
     predFileName = output
     f = open(predFileName, "wt")
     for mergedPred in mergedPredictions:
         if len(mergedPred[0]) > 1 and "1" in mergedPred[0]:
             mergedPred[0].remove("1")
         mergedPred[1] = str(mergedPred[1])
         mergedPred[0] = ",".join(sorted(list(mergedPred[0])))
         f.write(" ".join(mergedPred) + "\n")
     f.close()
     
     return mergedPredictions
开发者ID:jbjorne,项目名称:Tdevel,代码行数:93,代码来源:MultiLabelClassifier.py

示例11: crossValidate

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]

#.........这里部分代码省略.........
            parameterOptimizationSet = exampleSets[parameterOptimizationSetKey]
            trainSet = []
            for key2 in keys:
                if key2 != key and key2 != parameterOptimizationSetKey:
                    trainSet.extend(exampleSets[key2])

        if parameterOptimizationSet != None: # constant external parameter optimization set
            evaluationArgs = {"classSet":exampleBuilder.classSet}
            if options.parameters != None:
                paramDict = splitParameters(options.parameters)
                bestResults = classifier.optimize([trainSet], [parameterOptimizationSet], paramDict, Evaluation, evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations)
            else:
                bestResults = classifier.optimize([trainSet], [parameterOptimizationSet], evaluationClass=Evaluation, evaluationArgs=evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations)
        else: # nested x-fold parameter optimization
            assert (options.folds[1] >= 2)
            optimizationFolds = Example.makeExampleFolds(trainSet, options.folds[1])
            optimizationSets = Example.divideExamples(trainSet, optimizationFolds)
            optimizationSetList = []
            optSetKeys = optimizationSets.keys()
            optSetKeys.sort()
            for optSetKey in optSetKeys:
                optimizationSetList.append(optimizationSets[optSetKey])
            evaluationArgs = {"classSet":exampleBuilder.classSet}
            if options.parameters != None:
                paramDict = splitParameters(options.parameters)
                bestResults = classifier.optimize(optimizationSetList, optimizationSetList, paramDict, Evaluation, evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations)
            else:
                bestResults = classifier.optimize(optimizationSetList, optimizationSetList, evaluationClass=Evaluation, evaluationArgs=evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations)
        
        # Classify
        print >> sys.stderr, "Classifying test data"
        bestParams = bestResults[2]
        if bestParams.has_key("timeout"):
            del bestParams["timeout"]
        print >> sys.stderr, "Parameters:", bestParams
        print >> sys.stderr, "Training",
        startTime = time.time()
        classifier.train(trainSet, bestParams)
        print >> sys.stderr, "(Time spent:", time.time() - startTime, "s)"
        print >> sys.stderr, "Testing",
        startTime = time.time()
        predictions = classifier.classify(testSet)
        if options.output != None:
            pdict = []
            fieldnames = ["class","prediction","id","fold"]
            for p in predictions:
                if "typed" in exampleBuilder.styles:
                    pdict.append( {"class":exampleBuilder.classSet.getName(p[0][1]), "prediction":exampleBuilder.classSet.getName(p[1]), "id":p[0][0], "fold":key} )
                else:
                    pdict.append( {"class":p[0][1], "prediction":p[1], "id":p[0][0], "fold":key} )
            TableUtils.addToCSV(pdict, options.output +"/predictions.csv", fieldnames)
        print >> sys.stderr, "(Time spent:", time.time() - startTime, "s)"
        
        # Calculate statistics
        evaluation = Evaluation(predictions, classSet=exampleBuilder.classSet)
        print >> sys.stderr, evaluation.toStringConcise()
        print >> sys.stderr, timer.toString()
        evaluations.append(evaluation)
        
        # Save example sets
        if options.output != None:
            print >> sys.stderr, "Saving example sets to", options.output
            Example.writeExamples(exampleSets[0], options.output +"/fold"+str(key+1) + "/examplesTest.txt")
            Example.writeExamples(exampleSets[1], options.output +"/fold"+str(key+1) + "/examplesTrain.txt")
            if parameterOptimizationSet == None:
                for k,v in optimizationSets.iteritems():
                    Example.writeExamples(v, options.output +"/fold"+str(key+1) + "/examplesOptimizationSet" + str(k) + ".txt")
            else:
                Example.writeExamples(parameterOptimizationSet, options.output +"/fold"+str(key+1) + "/examplesOptimizationSetPredefined.txt")
            TableUtils.writeCSV(bestResults[2], options.output +"/fold"+str(key+1) + "/parameters.csv")
            evaluation.saveCSV(options.output +"/fold"+str(key+1) + "/results.csv")
            print >> sys.stderr, "Compressing folder"
            zipTree(options.output, "fold"+str(key+1))
        
        parameterOptimizationSet = constantParameterOptimizationSet
    
    print >> sys.stderr, "Cross-validation Results"
    for i in range(len(evaluations)):
        print >> sys.stderr, evaluations[i].toStringConcise("  Fold "+str(i)+": ")
    averageResult = Evaluation.average(evaluations)
    print >> sys.stderr, averageResult.toStringConcise("  Avg: ")
    pooledResult = Evaluation.pool(evaluations)
    print >> sys.stderr, pooledResult.toStringConcise("  Pool: ")
    if options.output != None:
        for i in range(len(evaluations)):
            evaluations[i].saveCSV(options.output+"/results.csv", i)
        averageResult.saveCSV(options.output+"/results.csv", "Avg")
        pooledResult.saveCSV(options.output+"/results.csv", "Pool")
        averageResult.saveCSV(options.output+"/resultsAverage.csv")
        pooledResult.saveCSV(options.output+"/resultsPooled.csv")
    # Visualize
    if options.visualization != None:
        visualize(sentences, pooledResult.classifications, options, exampleBuilder)
    
    # Save interactionXML
    if options.resultsToXML != None:
        classSet = None
        if "typed" in exampleBuilder.styles:
            classSet = exampleBuilder.classSet
        Example.writeToInteractionXML(pooledResult.classifications, corpusElements, options.resultsToXML, classSet)
开发者ID:jbjorne,项目名称:Tdevel,代码行数:104,代码来源:CrossAnalysis.py

示例12: OptionParser

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]
                    
    return examples

if __name__=="__main__":
    # Import Psyco if available
    try:
        import psyco
        psyco.full()
        print >> sys.stderr, "Found Psyco, using"
    except ImportError:
        print >> sys.stderr, "Psyco not installed"

    from optparse import OptionParser
    import os
    optparser = OptionParser(usage="%prog [options]\nCreate an html visualization for a corpus.")
    optparser.add_option("-i", "--input", default=None, dest="input", help="Corpus in analysis format", metavar="FILE")
    optparser.add_option("-o", "--output", default=None, dest="output", help="Output directory, useful for debugging")
    (options, args) = optparser.parse_args()
    
    print >> sys.stderr, "Reading input from " + options.input
    examples = readARFF(options.input)
    if options.output == None:
        if options.input.rsplit(".",1)[-1] == "arff":
            options.output = options.input.rsplit(".",1)[0] + ".examples"
        else:
            options.output = options.input + ".examples"
    print >> sys.stderr, "Writing output to " + options.output
    ExampleUtils.writeExamples(examples, options.output)
    
    
开发者ID:jbjorne,项目名称:Tdevel,代码行数:30,代码来源:ConvertARFF.py

示例13: IdSet

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import writeExamples [as 别名]
 else:
     print >> sys.stderr, "Using predefined model"
     bestResults = [None,None,{}]
     for k,v in classifierParamDict.iteritems():
         bestResults[2][k] = v
     featureSet = IdSet()
     featureSet.load(os.path.join(classifierParamDict["predefined"][0], "feature_names.txt"))
     classSet = None
     if os.path.exists(os.path.join(classifierParamDict["predefined"][0], "class_names.txt")):
         classSet = IdSet()
         classSet.load(os.path.join(classifierParamDict["predefined"][0], "class_names.txt"))
     exampleBuilder = ExampleBuilder(featureSet=featureSet, classSet=classSet, **splitParameters(options.exampleBuilderParameters))
 # Save training sets
 if options.output != None:
     print >> sys.stderr, "Saving example sets to", options.output
     Example.writeExamples(exampleSets[0], options.output + "/examplesTrain.txt")
     if not classifierParamDict.has_key("predefined"):
         Example.writeExamples(optimizationSets[0], options.output + "/examplesOptimizationTest.txt")
         Example.writeExamples(optimizationSets[1], options.output + "/examplesOptimizationTrain.txt")
     TableUtils.writeCSV(bestResults[2], options.output +"/best_parameters.csv")
 
 # Optimize and train
 if options.output != None:
     classifier = Classifier(workDir = options.output + "/classifier")
 else:
     classifier = Classifier()
 classifier.featureSet = exampleBuilder.featureSet
 if hasattr(exampleBuilder,"classSet"):
     classifier.classSet = exampleBuilder.classSet
 print >> sys.stderr, "Classifying test data"
 if bestResults[2].has_key("timeout"):
开发者ID:jbjorne,项目名称:Tdevel,代码行数:33,代码来源:SplitAnalysis.py


注:本文中的Core.ExampleUtils.writeExamples方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。