当前位置: 首页>>代码示例>>Python>>正文


Python ExampleUtils.readExamples方法代码示例

本文整理汇总了Python中Core.ExampleUtils.readExamples方法的典型用法代码示例。如果您正苦于以下问题:Python ExampleUtils.readExamples方法的具体用法?Python ExampleUtils.readExamples怎么用?Python ExampleUtils.readExamples使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Core.ExampleUtils的用法示例。


在下文中一共展示了ExampleUtils.readExamples方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
 def test(cls, examples, modelPath, output=None, parameters=None, timeout=None):
     if type(examples) == types.ListType:
         print >> sys.stderr, "Classifying", len(examples), "with All-True Classifier"
         examples, predictions = self.filterClassificationSet(examples, False)
         testPath = self.tempDir+"/test.dat"
         Example.writeExamples(examples, testPath)
     else:
         print >> sys.stderr, "Classifying file", examples, "with All-True Classifier"
         testPath = examples
         examples = Example.readExamples(examples,False)
     print >> sys.stderr, "Note! Classification must be binary"
     #examples, predictions = self.filterClassificationSet(examples, True)
     predictions = []
     for example in examples:
         #predictions.append( (example, example[1]) )
         predictions.append( [2] ) #[example[1]] )
     
     if output == None:
         output = "predictions"
     f = open(output, "wt")
     for p in predictions:
         f.write(str(p[0])+"\n")
     f.close()
         
     return predictions
开发者ID:DUT-LiuYang,项目名称:TEES,代码行数:27,代码来源:AllTrueClassifier.py

示例2: __init__

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
    def __init__(self, examples, predictions=None, classSet=None):
        if type(classSet) == types.StringType: # class names are in file
            classSet = IdSet(filename=classSet)
        if type(predictions) == types.StringType: # predictions are in file
            predictions = ExampleUtils.loadPredictions(predictions)
        if type(examples) == types.StringType: # examples are in file
            examples = ExampleUtils.readExamples(examples, False)

        self.classSet = classSet
        # define class ids in alphabetical order
        self.classSet = classSet
        if classSet != None:
            classNames = sorted(classSet.Ids.keys())
        else:
            classNames = []
        # make an ordered list of class ids
        self.classes = []
        for className in classNames:
            self.classes.append(classSet.getId(className))
        # create data structures for per-class evaluation
        self.dataByClass = {}
        for cls in self.classes:
            self.dataByClass[cls] = EvaluationData()
        # hack for unnamed classes
        if len(self.dataByClass) == 0:
            self.dataByClass[1] = EvaluationData()
            self.dataByClass[2] = EvaluationData()
        
        #self.untypedUndirected = None
        self.untypedCurrentMajorId = None
        self.untypedPredictionQueue = []
        self.untypedUndirected = EvaluationData()
        #self.AUC = None
        if predictions != None:
            self._calculate(examples, predictions)
开发者ID:ninjin,项目名称:TEES,代码行数:37,代码来源:AveragingMultiClassEvaluator.py

示例3: loadExamples

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
 def loadExamples(self, examples, predictions):
     if type(predictions) == types.StringType:
         print >> sys.stderr, "Reading predictions from", predictions
         predictions = ExampleUtils.loadPredictions(predictions)
     if type(examples) == types.StringType:
         print >> sys.stderr, "Reading examples from", examples
         examples = ExampleUtils.readExamples(examples, False)
     return examples, predictions
开发者ID:jbjorne,项目名称:Tdevel,代码行数:10,代码来源:SentenceExampleWriter.py

示例4: test

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
 def test(cls, examples, modelPath, output=None, parameters=None, forceInternal=False): # , timeout=None):
     """
     Classify examples with a pre-trained model.
     
     @type examples: string (filename) or list (or iterator) of examples
     @param examples: a list or file containing examples in SVM-format
     @type modelPath: string
     @param modelPath: filename of the pre-trained model file
     @type parameters: a dictionary or string
     @param parameters: parameters for the classifier
     @type output: string
     @param output: the name of the predictions file to be written
     @type forceInternal: Boolean
     @param forceInternal: Use python classifier even if SVM Multiclass binary is defined in Settings.py
     """
     if forceInternal or Settings.SVMMultiClassDir == None:
         return cls.testInternal(examples, modelPath, output)
     timer = Timer()
     if type(examples) == types.ListType:
         print >> sys.stderr, "Classifying", len(examples), "with SVM-MultiClass model", modelPath
         examples, predictions = self.filterClassificationSet(examples, False)
         testPath = self.tempDir+"/test.dat"
         Example.writeExamples(examples, testPath)
     else:
         print >> sys.stderr, "Classifying file", examples, "with SVM-MultiClass model", modelPath
         testPath = cls.stripComments(examples)
         examples = Example.readExamples(examples,False)
     args = ["/home/jari/Programs/liblinear-1.5-poly2/predict"]
     if modelPath == None:
         modelPath = "model"
     if parameters != None:
         parameters = copy.copy(parameters)
         if parameters.has_key("c"):
             del parameters["c"]
         if parameters.has_key("predefined"):
             parameters = copy.copy(parameters)
             modelPath = os.path.join(parameters["predefined"][0],"classifier/model")
             del parameters["predefined"]
         self.__addParametersToSubprocessCall(args, parameters)
     if output == None:
         output = "predictions"
         logFile = open("svmmulticlass.log","at")
     else:
         logFile = open(output+".log","wt")
     args += [testPath, modelPath, output]
     #if timeout == None:
     #    timeout = -1
     #print args
     subprocess.call(args, stdout = logFile, stderr = logFile)
     predictionsFile = open(output, "rt")
     lines = predictionsFile.readlines()
     predictionsFile.close()
     predictions = []
     for i in range(len(lines)):
         predictions.append( [int(lines[i].split()[0])] + lines[i].split()[1:] )
         #predictions.append( (examples[i],int(lines[i].split()[0]),"multiclass",lines[i].split()[1:]) )
     print >> sys.stderr, timer.toString()
     return predictions
开发者ID:jbjorne,项目名称:Tdevel,代码行数:60,代码来源:LibLinearPoly2Classifier.py

示例5: addExamples

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
def addExamples(exampleFile, predictionFile, classFile, matrix):
    classSet = IdSet(filename=classFile)
    f = open(predictionFile, "rt")
    for example in ExampleUtils.readExamples(exampleFile, False):
        pred = int(f.readline().split()[0])
        predClasses = classSet.getName(pred)
        goldClasses = classSet.getName(example[1])
        for predClass in predClasses.split("---"):
            for goldClass in goldClasses.split("---"):
                matrix[predClass][goldClass]
                matrix[goldClass][predClass] += 1
    f.close()
开发者ID:DUT-LiuYang,项目名称:TEES,代码行数:14,代码来源:Release.py

示例6: write

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
    def write(
        cls,
        examples,
        predictions,
        corpus,
        outputFile,
        classSet=None,
        parse=None,
        tokenization=None,
        goldCorpus=None,
        insertWeights=False,
    ):
        if type(examples) == types.StringType:
            print >>sys.stderr, "Reading examples from", examples
            examples = ExampleUtils.readExamples(examples, False)

        # This looks a bit strange, but should work with the re-iterable
        # generators that readExamples returns
        xType = None
        for example in examples:
            assert example[3].has_key("xtype")
            xType = example[3]["xtype"]
            break

        if xType == "token":
            w = EntityExampleWriter()
            if insertWeights:
                w.insertWeights = True
        elif xType == "edge":
            w = EdgeExampleWriter()
        elif xType == "task3":
            w = ModifierExampleWriter()
        elif xType == "entRel":
            w = EntityRelationExampleWriter()
        elif xType == "phrase":
            w = PhraseTriggerExampleWriter()
        # IF LOCAL
        elif xType == "um":
            w = UnmergingExampleWriter()
        # elif xType == "ue":
        #    w = UnmergedEdgeExampleWriter()
        # elif xType == "asym":
        #    w = AsymmetricEventExampleWriter()
        # ENDIF
        else:
            assert False, ("Unknown entity type", xType)
        return w.writeXML(
            examples, predictions, corpus, outputFile, classSet, parse, tokenization, goldCorpus=goldCorpus
        )
开发者ID:DUT-LiuYang,项目名称:TEES,代码行数:51,代码来源:BioTextExampleWriter.py

示例7: __init__

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
 def __init__(self, examples, predictions=None, classSet=None):
     if type(classSet) == types.StringType: # class names are in file
         classSet = IdSet(filename=classSet)
     if type(predictions) == types.StringType: # predictions are in file
         predictions = ExampleUtils.loadPredictions(predictions)
     if type(examples) == types.StringType: # examples are in file
         examples = ExampleUtils.readExamples(examples, False)
     
     SharedTaskEvaluator.corpusElements = Core.SentenceGraph.loadCorpus(SharedTaskEvaluator.corpusFilename, SharedTaskEvaluator.parse, SharedTaskEvaluator.tokenization)
     # Build interaction xml
     xml = BioTextExampleWriter.write(examples, predictions, SharedTaskEvaluator.corpusElements, None, SharedTaskEvaluator.ids+".class_names", SharedTaskEvaluator.parse, SharedTaskEvaluator.tokenization)
     #xml = ExampleUtils.writeToInteractionXML(examples, predictions, SharedTaskEvaluator.corpusElements, None, "genia-direct-event-ids.class_names", SharedTaskEvaluator.parse, SharedTaskEvaluator.tokenization)
     # Convert to GENIA format
     gifxmlToGenia(xml, SharedTaskEvaluator.geniaDir, task=SharedTaskEvaluator.task, verbose=False)
     # Use GENIA evaluation tool
     self.results = evaluateSharedTask(SharedTaskEvaluator.geniaDir, task=SharedTaskEvaluator.task, evaluations=["approximate"], verbose=False)
开发者ID:jbjorne,项目名称:Tdevel,代码行数:18,代码来源:SharedTaskEvaluator.py

示例8: __init__

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
    def __init__(self, examples, predictions=None, classSet=None):
        if type(classSet) == types.StringType: # class names are in file
            classSet = IdSet(filename=classSet)
        if type(predictions) == types.StringType: # predictions are in file
            predictions = ExampleUtils.loadPredictions(predictions)
        if type(examples) == types.StringType: # examples are in file
            examples = ExampleUtils.readExamples(examples, False)

        self.classSet = classSet
        self.dataByClass = defaultdict(EvaluationData)
        
        #self.untypedUndirected = None
        self.untypedCurrentMajorId = None
        self.untypedPredictionQueue = []
        self.untypedUndirected = EvaluationData()
        #self.AUC = None
        if predictions != None:
            self._calculate(examples, predictions)
开发者ID:jbjorne,项目名称:Tdevel,代码行数:20,代码来源:MultiLabelMultiClassEvaluator.py

示例9: classify

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
 def classify(self, examples, output, model=None, finishBeforeReturn=False, replaceRemoteFiles=True):
     output = os.path.abspath(output)
     # Get examples
     if type(examples) == types.ListType:
         print >> sys.stderr, "Classifying", len(examples), "with All-Correct Classifier"
     else:
         print >> sys.stderr, "Classifying file", examples, "with All-Correct Classifier"
         examples = self.getExampleFile(examples, upload=False, replaceRemote=False, dummy=False)
         examples = Example.readExamples(examples, False)
     # Return a new classifier instance for following the training process and using the model
     classifier = copy.copy(self)
     # Classify
     f = open(output, "wt")
     for example in examples:
         f.write(str(example[1]) + "\n")
     f.close()
     classifier.predictions = output
     return classifier
开发者ID:DUT-LiuYang,项目名称:TEES,代码行数:20,代码来源:AllCorrectClassifier.py

示例10: __init__

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
 def __init__(self, examples, predictions=None, classSet=None):
     if type(classSet) == types.StringType: # class names are in file
         classSet = IdSet(filename=classSet)
     if type(predictions) == types.StringType: # predictions are in file
         predictions = ExampleUtils.loadPredictions(predictions)
     if type(examples) == types.StringType: # examples are in file
         examples = ExampleUtils.readExamples(examples, False)
     
     corpusElements = Core.SentenceGraph.loadCorpus(BXEvaluator.corpusFilename, BXEvaluator.parse, BXEvaluator.tokenization)
     # Build interaction xml
     xml = BioTextExampleWriter.write(examples, predictions, corpusElements, None, BXEvaluator.ids+".class_names", BXEvaluator.parse, BXEvaluator.tokenization)
     xml = ix.splitMergedElements(xml, None)
     xml = ix.recalculateIds(xml, None, True)
     #xml = ExampleUtils.writeToInteractionXML(examples, predictions, SharedTaskEvaluator.corpusElements, None, "genia-direct-event-ids.class_names", SharedTaskEvaluator.parse, SharedTaskEvaluator.tokenization)
     # Convert to GENIA format
     STFormat.ConvertXML.toSTFormat(xml, BXEvaluator.geniaDir, outputTag="a2")
     #gifxmlToGenia(xml, BXEvaluator.geniaDir, task=SharedTaskEvaluator.task, verbose=False)
     # Use GENIA evaluation tool
     self.results = BioNLP11GeniaTools.evaluateBX(BXEvaluator.geniaDir, corpusName=BXEvaluator.corpusTag)
     corpusElements = None
开发者ID:jbjorne,项目名称:Tdevel,代码行数:22,代码来源:BXEvaluator.py

示例11: __init__

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
 def __init__(self, examples=None, predictions=None, classSet=None):
     if type(classSet) == types.StringType:  # class names are in file
         classSet = IdSet(filename=classSet)
     if type(predictions) == types.StringType:  # predictions are in file
         predictions = ExampleUtils.loadPredictions(predictions)
     if type(examples) == types.StringType:  # examples are in file
         examples = ExampleUtils.readExamples(examples, False)
     # self.examples = examples
     # self.predictions = predictions
     self.truePositives = 0
     self.falsePositives = 0
     self.trueNegatives = 0
     self.falseNegatives = 0
     self.precision = None
     self.recall = None
     self.fScore = None
     self.AUC = None
     self.type = "binary"
     if predictions != None:
         self._calculate(examples, predictions)
开发者ID:ninjin,项目名称:TEES,代码行数:22,代码来源:BinaryEvaluator.py

示例12: polynomizeExamples

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
def polynomizeExamples(exampleFile, outFile, weightFeatures, idSet):
    outFile = open(outFile, "wt")
    addCount = 0
    
    f = open(exampleFile)
    numExamples = sum([1 for line in f])
    f.close()
    counter = ProgressCounter(numExamples, "Polynomize examples", step=0)
    
    weightFeatureIds = {}
    for weightFeature in weightFeatures:
        wId = idSet.getId(weightFeature, False)
        if wId == None:
            sys.exit("Weight vector feature", weightFeature, "not in id file")
        weightFeatureIds[weightFeature] = wId
    
    print "Polynomizing", exampleFile
    exampleCache = []
    for example in ExampleUtils.readExamples(exampleFile):
        counter.update(1, "Processing example ("+example[0]+"): ")
        features = example[2]
        for i in range(len(weightFeatures)-1):
            wI = weightFeatures[i]
            wIid = weightFeatureIds[wI]
            if not features.has_key(wIid):
                continue
            for j in range(i + 1, len(weightFeatures)):
                wJ = weightFeatures[j]
                wJid = weightFeatureIds[wJ]
                if not features.has_key(wJid):
                    continue
                # Make polynomial feature
                features[idSet.getId(wI + "_AND_" + wJ)] = 1
                addCount += 1
        exampleCache.append(example)
        if len(exampleCache) > 50:
            ExampleUtils.appendExamples(exampleCache, outFile)
            exampleCache = []
    ExampleUtils.appendExamples(exampleCache, outFile)
    outFile.close()
    print "Added", addCount, "polynomial features"
开发者ID:jbjorne,项目名称:Tdevel,代码行数:43,代码来源:SVMMultiClassPolynomizeExamples.py

示例13: threshold

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
 def threshold(cls, examples, predictions):
     # Make negative confidence score / true class pairs
     if type(examples) in types.StringTypes:
         examples = ExampleUtils.readExamples(examples, False)
     if type(predictions) in types.StringTypes:
         predictions = ExampleUtils.loadPredictions(predictions)
     pairs = []
     realPositives = 0
     for example, prediction in itertools.izip(examples, predictions):
         trueClass = example[1]
         assert(trueClass > 0) # multiclass classification uses non-negative integers
         if trueClass > 1:
             realPositives += 1
         negClassValue = prediction[1]
         pairs.append( (negClassValue, trueClass) )
     pairs.sort(reverse=True)
     realNegatives = len(pairs) - realPositives
     
     # When starting thresholding, all examples are considered positive
     binaryF = EvaluationData()
     binaryF._tp = realPositives
     binaryF._fp = realNegatives
     binaryF._fn = 0
     binaryF.calculateFScore()
     fscore = binaryF.fscore
     threshold = pairs[0][0]-1.
     
     # Turn one example negative at a time
     for pair in pairs:
         if pair[1] == 1: # the real class is negative
             binaryF._fp -= 1 # false positive -> true negative
         else: # the real class is a positive class
             binaryF._tp -= 1 # true positive -> ...
             binaryF._fn += 1 # ... false negative
         binaryF.calculateFScore()
         if binaryF.fscore > fscore:
             fscore = binaryF.fscore
             threshold = pair[0]+0.00000001
     return threshold, fscore        
开发者ID:ninjin,项目名称:TEES,代码行数:41,代码来源:AveragingMultiClassEvaluator.py

示例14: __init__

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
    def __init__(self, examples=None, predictions=None, classSet=None):
        if type(classSet) == types.StringType: # class names are in file
            classSet = IdSet(filename=classSet)
        if type(predictions) == types.StringType: # predictions are in file
            predictions = ExampleUtils.loadPredictions(predictions)
        if type(examples) == types.StringType: # examples are in file
            examples = ExampleUtils.readExamples(examples, False)
        
        self.keep = set(["CPR:3", "CPR:4", "CPR:5", "CPR:6", "CPR:9"])

        self.classSet = classSet
        self.results = None
        self.internal = None
        if predictions != None:
            for example in examples:
                if example[3] != None:
                    print >> sys.stderr, "ChemProt Evaluator:"
                    self._calculateExamples(examples, predictions)
                else:
                    print >> sys.stderr, "No example extra info, skipping ChemProt evaluation"
                break
            self.internal = AveragingMultiClassEvaluator(examples, predictions, classSet)
            print >> sys.stderr, "AveragingMultiClassEvaluator:"
            print >> sys.stderr, self.internal.toStringConcise()
开发者ID:jbjorne,项目名称:TEES,代码行数:26,代码来源:ChemProtEvaluator.py

示例15: determineThreshold

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import readExamples [as 别名]
 def determineThreshold(self, examples, predictions):
     if type(predictions) == types.StringType: # predictions are in file
         predictions = ExampleUtils.loadPredictions(predictions)
     if type(examples) == types.StringType: # examples are in file
         examples = ExampleUtils.readExamples(examples, False)
         
     examplesByClass = {}
     for cls in self.classes:
         examplesByClass[cls] = []
     # prepare examples
     for example, prediction in itertools.izip(examples, predictions):
         # Check true class for multilabel
         trueClass = example[1]
         trueClassName = self.classSet.getName(trueClass)
         assert(trueClass > 0) # multiclass classification uses non-negative integers
         if "---" in trueClassName:
             trueClass = set()
             for name in trueClassName.split("---"):
                 trueClass.add(self.classSet.getId(name))
         else:
             trueClass = [trueClass]
         # Check prediction for multilabel
         predictedClasses = prediction[0]
         if type(predictedClasses) == types.IntType:
             predictedClasses = [predictedClasses]
         
         for predType in predictedClasses:
             if predType != 1:
                 exTrueClass = 1
                 if predType in trueClass:
                     exTrueClass = 2
                 examplesByClass[predType].append( (prediction[predType], exTrueClass, 2) )
         # positives are negatives for other classes
         for cls in self.classes:
             if cls not in predictedClasses:
                 exTrueClass = 1
                 if cls in trueClass:
                     exTrueClass = 2
                 examplesByClass[cls].append( (prediction[cls], exTrueClass, 1) )
     # do the thresholding
     thresholdByClass = {}
     for cls in self.classes:
         if cls == 1:
             continue
         thresholdByClass[cls] = 0.0
         examplesByClass[cls].sort()
         # Start with all below zero being negative, and all above it being what is predicted
         ev = EvaluationData()
         for example in examplesByClass[cls]:
             #print example
             if example[0] < 0.0:
                 updateF(ev, example[1], 2, 1) # always negative
             else:
                 updateF(ev, example[1], example[2], 1) # what is predicted
         count = 0
         bestF = [self.dataByClass[cls].fscore, None, (0.0, None), None]
         for example in examplesByClass[cls]:
             if example[0] < 0.0:
                 # Remove original example
                 updateF(ev, example[1], 2, -1)
                 # Add new example
                 updateF(ev, example[1], example[2], 1)
                 # Calculate F for this point
             else:
                 # Remove original example
                 updateF(ev, example[1], example[2], -1)
                 # Add new example
                 updateF(ev, example[1], 1, 1)
                 # Calculate F for this point
             ev.calculateFScore()
             #print example, ev.toStringConcise()
             count += 1
             #if self.classSet.getName(cls) == "Binding":
             #    print count, example, ev.toStringConcise()
             if ev.fscore > bestF[0]:
                 bestF = (ev.fscore, count, example, ev.toStringConcise())
                 self.dataByClass[cls] = copy.copy(ev)
         print >> sys.stderr, "Threshold", self.classSet.getName(cls), bestF
         if bestF[2][0] != 0.0:
             thresholdByClass[cls] = bestF[2][0] + 0.00000001
         else:
             thresholdByClass[cls] = 0.0
     #print thresholdByClass
     self.thresholds = thresholdByClass
     #self._calculate(examples, predictions, thresholdByClass)
     #print >> sys.stderr, "Optimal", self.toStringConcise()
     return thresholdByClass
开发者ID:jbjorne,项目名称:Tdevel,代码行数:89,代码来源:MultiLabelEvaluator.py


注:本文中的Core.ExampleUtils.readExamples方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。