当前位置: 首页>>代码示例>>Python>>正文


Python ExampleUtils.divideExamples方法代码示例

本文整理汇总了Python中Core.ExampleUtils.divideExamples方法的典型用法代码示例。如果您正苦于以下问题:Python ExampleUtils.divideExamples方法的具体用法?Python ExampleUtils.divideExamples怎么用?Python ExampleUtils.divideExamples使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Core.ExampleUtils的用法示例。


在下文中一共展示了ExampleUtils.divideExamples方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: crossValidate

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import divideExamples [as 别名]
def crossValidate(exampleBuilder, corpusElements, examples, options, timer):
    parameterOptimizationSet = None
    constantParameterOptimizationSet = None
    if options.paramOptData != None:
        print >> sys.stderr, "Separating parameter optimization set"
        parameterOptimizationDivision = Example.makeCorpusDivision(corpusElements, float(options.paramOptData))
        exampleSets = Example.divideExamples(examples, parameterOptimizationDivision)
        constantParameterOptimizationSet = exampleSets[0]
        parameterOptimizationSet = constantParameterOptimizationSet
        optDocs = 0
        for k,v in parameterOptimizationDivision.iteritems():
            if v == 0:
                del corpusElements.documentsById[k]
                optDocs += 1
        print >> sys.stderr, "  Documents for parameter optimization:", optDocs
    discardedParameterCombinations = []

    print >> sys.stderr, "Dividing data into folds"
    corpusFolds = Example.makeCorpusFolds(corpusElements, options.folds[0])
    exampleSets = Example.divideExamples(examples, corpusFolds)
    
    keys = exampleSets.keys()
    keys.sort()
    evaluations = []
    for key in keys:
        testSet = exampleSets[key]
        for example in testSet:
            example[3]["visualizationSet"] = key + 1
        trainSet = []
        for key2 in keys:
            if key != key2:
                trainSet.extend(exampleSets[key2])
        print >> sys.stderr, "Fold", str(key + 1)
        # Create classifier object
        if options.output != None:
            if not os.path.exists(options.output+"/fold"+str(key+1)):
                os.mkdir(options.output+"/fold"+str(key+1))
#                if not os.path.exists(options.output+"/fold"+str(key+1)+"/classifier"):
#                    os.mkdir(options.output+"/fold"+str(key+1)+"/classifier")
            classifier = Classifier(workDir = options.output + "/fold"+str(key + 1))
        else:
            classifier = Classifier()
        classifier.featureSet = exampleBuilder.featureSet
        # Optimize ####################
        # Check whether there is need for included param opt set
        if parameterOptimizationSet == None and options.folds[1] == 0: # 8-1-1 folds
            assert(len(keys) > 1)
            if keys.index(key) == 0:
                parameterOptimizationSetKey = keys[-1]
            else:
                parameterOptimizationSetKey = keys[keys.index(key)-1]
            parameterOptimizationSet = exampleSets[parameterOptimizationSetKey]
            trainSet = []
            for key2 in keys:
                if key2 != key and key2 != parameterOptimizationSetKey:
                    trainSet.extend(exampleSets[key2])

        if parameterOptimizationSet != None: # constant external parameter optimization set
            evaluationArgs = {"classSet":exampleBuilder.classSet}
            if options.parameters != None:
                paramDict = splitParameters(options.parameters)
                bestResults = classifier.optimize([trainSet], [parameterOptimizationSet], paramDict, Evaluation, evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations)
            else:
                bestResults = classifier.optimize([trainSet], [parameterOptimizationSet], evaluationClass=Evaluation, evaluationArgs=evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations)
        else: # nested x-fold parameter optimization
            assert (options.folds[1] >= 2)
            optimizationFolds = Example.makeExampleFolds(trainSet, options.folds[1])
            optimizationSets = Example.divideExamples(trainSet, optimizationFolds)
            optimizationSetList = []
            optSetKeys = optimizationSets.keys()
            optSetKeys.sort()
            for optSetKey in optSetKeys:
                optimizationSetList.append(optimizationSets[optSetKey])
            evaluationArgs = {"classSet":exampleBuilder.classSet}
            if options.parameters != None:
                paramDict = splitParameters(options.parameters)
                bestResults = classifier.optimize(optimizationSetList, optimizationSetList, paramDict, Evaluation, evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations)
            else:
                bestResults = classifier.optimize(optimizationSetList, optimizationSetList, evaluationClass=Evaluation, evaluationArgs=evaluationArgs, combinationsThatTimedOut=discardedParameterCombinations)
        
        # Classify
        print >> sys.stderr, "Classifying test data"
        bestParams = bestResults[2]
        if bestParams.has_key("timeout"):
            del bestParams["timeout"]
        print >> sys.stderr, "Parameters:", bestParams
        print >> sys.stderr, "Training",
        startTime = time.time()
        classifier.train(trainSet, bestParams)
        print >> sys.stderr, "(Time spent:", time.time() - startTime, "s)"
        print >> sys.stderr, "Testing",
        startTime = time.time()
        predictions = classifier.classify(testSet)
        if options.output != None:
            pdict = []
            fieldnames = ["class","prediction","id","fold"]
            for p in predictions:
                if "typed" in exampleBuilder.styles:
                    pdict.append( {"class":exampleBuilder.classSet.getName(p[0][1]), "prediction":exampleBuilder.classSet.getName(p[1]), "id":p[0][0], "fold":key} )
                else:
#.........这里部分代码省略.........
开发者ID:jbjorne,项目名称:Tdevel,代码行数:103,代码来源:CrossAnalysis.py

示例2: buildExamples

# 需要导入模块: from Core import ExampleUtils [as 别名]
# 或者: from Core.ExampleUtils import divideExamples [as 别名]
     # Build examples
     trainExamples = buildExamples(exampleBuilder, sentences, options)
     exampleSets[0] = trainExamples
     
     # Create classifier object
     classifier = Classifier()
     #if options.output != None:
     #    classifier = Classifier(workDir = options.output + "/classifier")
     #else:
     #    classifier = Classifier()
     classifier.featureSet = exampleBuilder.featureSet
     if hasattr(exampleBuilder,"classSet"):
         classifier.classSet = None
     
     # Optimize
     optimizationSets = Example.divideExamples(exampleSets[0])
     evaluationArgs = {"classSet":exampleBuilder.classSet}
     if options.parameters != None:
         paramDict = splitParameters(options.parameters)
         bestResults = classifier.optimize([optimizationSets[0]], [optimizationSets[1]], paramDict, Evaluation, evaluationArgs)
     else:
         bestResults = classifier.optimize([optimizationSets[0]], [optimizationSets[1]], evaluationClass=Evaluation, evaluationArgs=evaluationArgs)
 else:
     print >> sys.stderr, "Using predefined model"
     bestResults = [None,None,{}]
     for k,v in classifierParamDict.iteritems():
         bestResults[2][k] = v
     featureSet = IdSet()
     featureSet.load(os.path.join(classifierParamDict["predefined"][0], "feature_names.txt"))
     classSet = None
     if os.path.exists(os.path.join(classifierParamDict["predefined"][0], "class_names.txt")):
开发者ID:jbjorne,项目名称:Tdevel,代码行数:33,代码来源:SplitAnalysis.py


注:本文中的Core.ExampleUtils.divideExamples方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。