本文整理汇总了Python中WLanalysis.smooth方法的典型用法代码示例。如果您正苦于以下问题:Python WLanalysis.smooth方法的具体用法?Python WLanalysis.smooth怎么用?Python WLanalysis.smooth使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类WLanalysis
的用法示例。
在下文中一共展示了WLanalysis.smooth方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: compute_GRF_PDF_ps_pk
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
def compute_GRF_PDF_ps_pk (r):
'''for a convergence map with filename fn, compute the PDF and the power spectrum. sizedeg = 3.5**2, or 1.7**2'''
print cosmo, r
kmap = kmapGen(r)
#kmap = load(CMBlensing_dir+'GRF_fidu/'+'GRF_fidu_%04dr.npy'%(r))
i_arr = arange(len(sigmaP_arr))
if not doGRF:
kmap_smoothed = [WLanalysis.smooth(kmap, sigmaP) for sigmaP in sigmaP_arr]
ps = WLanalysis.PowerSpectrum(kmap_smoothed[0])[1]
PDF = [PDFGen(kmap_smoothed[i], PDFbin_arr[i]) for i in i_arr]
peaks = [peaksGen(kmap_smoothed[i], peak_bins_arr[i]) for i in i_arr]
###### generate GRF
else:
ps=0
random.seed(r)
GRF = (WLanalysis.GRF_Gen(kmap)).newGRF()
#save(CMBlensing_dir+'GRF_fidu/'+'GRF_fidu_%04dr.npy'%(r), GRF)
#GRF = load(CMBlensing_dir+'GRF_fidu/'+'GRF_fidu_%04dr.npy'%(r))
GRF_smoothed = [WLanalysis.smooth(GRF, sigmaP) for sigmaP in sigmaP_arr]
PDF = [PDFGen(GRF_smoothed[i], PDFbin_arr[i]) for i in i_arr]
peaks = [peaksGen(GRF_smoothed[i], peak_bins_arr[i]) for i in i_arr]
#############
return [ps,], PDF, peaks#, PDF_GRF, peaks_GRF
示例2: iskew
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
def iskew (i):
print i
ikmap_NL = kmapNL(i)
ikmap_NOISY = kmapNOISY(i)
skewness_NL = [skew(WLanalysis.smooth(ikmap_NL, ismooth).flatten() ) for ismooth in sigmaG_arr*PPA_NL]
skewness_NOISY = [skew(WLanalysis.smooth(ikmap_NOISY, ismooth).flatten() ) for ismooth in sigmaG_arr*PPA_NOISY]
return [skewness_NL, skewness_NOISY]
示例3: compute_GRF_PDF_ps_pk
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
def compute_GRF_PDF_ps_pk (cosmo, r, Gaus=0,sigmaG=8.0):
kmap = FT2real(cosmo, r, Gaus=Gaus)
ps = WLanalysis.PowerSpectrum(WLanalysis.smooth(kmap, 0.18), bins=bins)[1]#*2.0*pi/ell_arr**2
if not filtered:
kmap = WLanalysis.smooth(kmap, 2.93*sigmaG/8.0)
PDF = PDFGen(kmap, PDFbins)
peaks = peaksGen(kmap, peak_bins)
return concatenate([ps, PDF, peaks])
示例4: plot_predict_maps_fcn
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
def plot_predict_maps_fcn(WxsigmaG):
Wx, sigmaG = WxsigmaG
mask0 = maskGen(Wx, 0.5, sigmaG)
mask = WLanalysis.smooth(mask0, 5.0)
kmap_lensing = kmap_lensing_Gen(Wx, sigmaG)
kmap_predict = kmap_predict_Gen(Wx, sigmaG)
bmode_lensing= bmode_lensing_Gen(Wx, sigmaG)
mask_nan = mask0.copy()
mask_nan[mask0==0]=nan
#imshow(kmap_lensing*mask_nan, vmax=3*std(kmap_lensing), vmin=-2*std(kmap_lensing), origin = 'lower')
#title('W%i kmap_lensing'%(Wx))
#colorbar()
#savefig(plot_dir+'kmap_W%i_sigmaG%s_lensing.jpg'%(Wx,sigmaG))
#close()
##imshow(kmap_predict, vmax=3*std(kmap_predict), vmin=-2*std(kmap_predict), origin = 'lower')
imshow(kmap_predict*mask_nan, vmax=4*std(kmap_predict), vmin=0, origin = 'lower')
#imshow(kmap_predict, origin = 'lower')
title('W%i kmap_predict'%(Wx))
colorbar()
savefig(plot_dir+'kmap_L12_W%i_sigmaG%s_predict.jpg'%(Wx,sigmaG))
close()
示例5: KSmap
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
def KSmap(iinput):
'''Input:
i = ith zbin for zcut
hl = 'hi' or 'lo' for higher/lower z of the zcut
sigmaG: smoothing scale
Wx = 1..4 of the field
Output:
smoothed KS map and galn map.
'''
Wx, sigmaG, i, hl = iinput
print 'Wx, sigmaG, i, hl:', Wx, sigmaG, i, hl
kmap_fn = cat_dir+'KS/W%i_KS_%s_%s_sigmaG%02d.fit'%(Wx, zbins[i],hl,sigmaG*10)
galn_smooth_fn = cat_dir+'KS/W%i_galn_%s_%s_sigmaG%02d.fit'%(Wx, zbins[i],hl,sigmaG*10)
isfile_kmap, kmap = WLanalysis.TestFitsComplete(kmap_fn, return_file = True)
if isfile_kmap == False:
Me1_fn = cat_dir+'Me_Mw_galn/W%i_Me1w_%s_%s.fit'%(Wx, zbins[i],hl)
Me2_fn = cat_dir+'Me_Mw_galn/W%i_Me2w_%s_%s.fit'%(Wx, zbins[i],hl)
Mw_fn = cat_dir+'Me_Mw_galn/W%i_Mwm_%s_%s.fit'%(Wx, zbins[i],hl)
Me1 = WLanalysis.readFits(Me1_fn)
Me2 = WLanalysis.readFits(Me2_fn)
Mw = WLanalysis.readFits(Mw_fn)
Me1_smooth = WLanalysis.weighted_smooth(Me1, Mw, PPA=PPA512, sigmaG=sigmaG)
Me2_smooth = WLanalysis.weighted_smooth(Me2, Mw, PPA=PPA512, sigmaG=sigmaG)
kmap = WLanalysis.KSvw(Me1_smooth, Me2_smooth)
WLanalysis.writeFits(kmap,kmap_fn)
isfile_galn, galn_smooth = WLanalysis.TestFitsComplete(galn_smooth_fn, return_file = True)
if isfile_galn == False:
galn_fn = cat_dir+'Me_Mw_galn/W%i_galn_%s_%s.fit'%(Wx, zbins[i],hl)
galn = WLanalysis.readFits(galn_fn)
galn_smooth = WLanalysis.smooth(galn, sigma=sigmaG*PPA512)
WLanalysis.writeFits(galn_smooth, galn_smooth_fn)
示例6: iskew_GRF
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
def iskew_GRF (i):
print i
a=load('/Users/jia/weaklensing/CMBnonGaussian/colin_noisy/kappaMapTT_Gauss_10000sims/kappaMap%04dTT_3.pkl'%(i))
areal = real(fftpack.ifft2(a))
inorm = (2*pi*3.5/360.0)/(77.0**2)
areal /= inorm
skewness_NOISY = [skew(WLanalysis.smooth(areal, ismooth).flatten() ) for ismooth in sigmaG_arr*PPA_NOISY]
return skewness_NOISY
示例7: maskGen_init
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
def maskGen_init (Wx, sigma_pix=10, JCH=0):
galn = WLanalysis.smooth(load(cat_dir+'Me_Mw_galn/W%i_galn_zcut13.npy'%(Wx)),PPA512)
if JCH:
galn *= JCHPSmaskGen(Wx)
else:
galn *= PSmaskGen(Wx)## add point source mask for cmbl
mask = zeros(shape=galn.shape)
mask[10:-10,10:-10] = 1 ## remove edge 10 pixels
idx = where(galn<0.5)
mask[idx] = 0
mask_smooth = WLanalysis.smooth(mask, sigma_pix)
######## print out fksy and fsky 2 ##########
sizedeg = (sizes[Wx-1]/512.0)**2*12.0
fsky = sum(mask_smooth)/sizes[Wx-1]**2*sizedeg/41253.0
fsky2 = sum(mask_smooth**2)/sizes[Wx-1]**2*sizedeg/41253.0
fmask = sum(mask_smooth)/sizes[Wx-1]**2
fmask2 = sum(mask_smooth**2)/sizes[Wx-1]**2
print 'W%i, fsky=%.8f, fsky2=%.8f, fmask=%.8f, fmask2=%.8f'%(Wx, fsky, fsky2, fmask,fmask2)
#############################################
return mask_smooth#fsky, fsky2#
示例8: return_kappa_arr
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
def return_kappa_arr (Wx, sigmaG=sigmaG):
mask = maskGen(Wx, 0.5, sigmaG)
kmap_predict = kmap_predict_Gen(Wx, sigmaG)
kmap_predict -= mean(kmap_predict)
kmap_lensing = kmap_lensing_Gen(Wx, sigmaG)
bmode = bmode_lensing_Gen(Wx, sigmaG)
kproj_peak_mat = WLanalysis.peaks_mat(kmap_predict)
#kproj_peak_mat = WLanalysis.peaks_mat(kmap_lensing)
#kproj_peak_mat = WLanalysis.peaks_mat(bmode)
idx_pos = (kproj_peak_mat!=0)&(~isnan(kproj_peak_mat))&(mask>0)
kappa_proj = kmap_predict[idx_pos]
kappa_lensing = kmap_lensing[idx_pos]
kappa_bmode = bmode[idx_pos]
######## do an overlay of peaks on top of convergence #######
if sigmaG == 8.9:
kmap_predict2 = kmap_predict_Gen(Wx, 5.3)
mask2 = maskGen(Wx, 0.5, 5.3)
kproj_peak_mat = WLanalysis.peaks_mat(kmap_predict2)
kproj_peak_mat[mask2==0] = nan
kproj_peak_mat[isnan(kproj_peak_mat)]=0
peaksmooth = WLanalysis.smooth(kproj_peak_mat,10)
kstd=std(kmap_lensing)
#pstd=std(kmap_predict2)
kmap_lensing[peaksmooth>2*std(peaksmooth)]=nan
kmap_lensing[mask2==0]=-99
kmap_predict2[peaksmooth>2*std(peaksmooth)]=nan
f2=figure(figsize=(20,12))
axx=f2.add_subplot(121)
axy=f2.add_subplot(122)
axx.imshow(kmap_lensing,origin='lower',vmin=-2*kstd,vmax=3*kstd,interpolation='nearest')
#f2.colorbar()
axx.set_title('lensing')
axy.imshow(kmap_predict2,origin='lower',interpolation='nearest')
#plt.colorbar(cax=axy)
axy.set_title('predict')
savefig(plot_dir+'peaks_location_W%s.jpg'%(Wx))
close()
return kappa_proj, kappa_lensing, kappa_bmode
示例9: array
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
icat = icat[:,idx_k]
#####################################
f_Wx = WLanalysis.gnom_fun(center)
y, x = array(f_Wx(icat[:2]))
weight = icat[3]
#k = np.load(obsPK_dir+'kappa_predict_W%i.npy'%(Wx))#kappa_predict_Mmax2e15_W%i.npy
A, galn = WLanalysis.coords2grid(x, y, array([k*weight, weight, k]), size=isize)
Mkw, Mw, Mk = A
###########################################
for sigmaG in (0.5, 1.0, 1.8, 3.5, 5.3, 8.9):
print Wx, sigmaG
mask0 = maskGen(Wx, 0.5, sigmaG)
mask = WLanalysis.smooth(mask0, 5.0)
################ make maps ######################
kmap_predict = WLanalysis.weighted_smooth(Mkw, Mw, PPA=PPA512, sigmaG=sigmaG)
kmap_predict*=mask
np.save(obsPK_dir+'maps/kmap_W%i_predict_sigmaG%02d.npy'%(Wx, sigmaG*10), kmap_predict)
###########################################
if plot_predict_maps:
def plot_predict_maps_fcn(WxsigmaG):
Wx, sigmaG = WxsigmaG
mask0 = maskGen(Wx, 0.5, sigmaG)
mask = WLanalysis.smooth(mask0, 5.0)
kmap_lensing = kmap_lensing_Gen(Wx, sigmaG)
kmap_predict = kmap_predict_Gen(Wx, sigmaG)
bmode_lensing= bmode_lensing_Gen(Wx, sigmaG)
示例10: k3Gen
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
def k3Gen(r):
print r
kmap=kmapGen(r)
kmap_smoothed=WLanalysis.smooth(kmap,sigmaG)
k3=mean(kmap_smoothed**3)
return k3
示例11: load
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
cat_w0 = load('/Users/jia/weaklensing/CFHTLenS_downloads/CFHTLens_2015-08-18T04-37-45.npy').T
RA, DEC, weight, Z_B, MAG_i, MAG_y, MAG_u, MAG_g, MAG_r, MAG_z = cat_w0
MAGI = amin(array([abs(MAG_y), abs(MAG_i)]),axis=0)
for Wx in range(1,5):
print Wx
center = centers[Wx-1]
mask=xmaskGen(Wx)
for cut in (22,23,24):
#
idx_Wx = where((RA<RAs[Wx-1][1])&(RA>RAs[Wx-1][0])&(MAGI>18)&(MAGI<cut)&(weight>0))[0]
igaln = coords2grid_counts(array([RA,DEC]).T[idx_Wx], Wx)
igaln=igaln/weightGen(Wx)
igaln=igaln/mean(igaln[mask>0])-1
igaln[mask<1]=0
igaln_smooth=WLanalysis.smooth(igaln,1.0)
save('/Users/jia/weaklensing/multiplicative/referee/galn_W%i_cut%i_LensfitWNonzero.npy'%(Wx,cut),igaln_smooth)
if create_dndz_LensfitWNonzero:
z_arr = arange(.025,3.5,0.05)
Pz = load('/Users/jia/weaklensing/CFHTLenS_downloads/2015-09-290split/Pz_xac.npy')
#Pz = (np.core.defchararray.replace(Pz,',','')).astype(float)
RA, DEC, weight, ZB = load('/Users/jia/weaklensing/CFHTLenS_downloads/2015-09-290split/ra_dec_weightz_xac.npy').T
cat_w0 = load('/Users/jia/weaklensing/CFHTLenS_downloads/CFHTLens_2015-08-18T04-37-45.npy').T
master_ra, master_dec, master_weight, Z_B, MAG_i, MAG_y, MAG_u, MAG_g, MAG_r, MAG_z = cat_w0
MAGI = amin(array([abs(MAG_y), abs(MAG_i)]),axis=0)
from pylab import *
figure()
for cut in (22,23,24):
示例12: real
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
#savefig(CMBNG_dir+'plot_official/plot_noiseless_%s_diff.pdf'%(['PDF','peaks'][j-1]))
#close()
if plot_sample_noiseless_noisy_map:
import pickle
from mpl_toolkits.axes_grid1 import make_axes_locatable
#kmap_noiseless=WLanalysis.readFits(CMBNG_dir+'test_maps/WLconv_z1100.00_0001r.fits')
#kmap_noiseless_8arcmin=WLanalysis.smooth(kmap_noiseless,78.01904762)
kmap_noiseless_8arcmin=load(CMBNG_dir+'test_maps/kmap_noiseless_8arcmin_1r.npy')
#### get noisy map ########
FTmap = pickle.load(open(CMBNG_dir+'colin_noisy/kappaMapTT_10000sims/kappaMap0000TT_3.pkl'))
areal = real(fftpack.ifft2(FTmap))
inorm = (2*pi*3.5/360.0)/(77.0**2)
areal /= inorm
kmap_noisy=areal
kmap_noisy_8arcmin = WLanalysis.smooth(kmap_noisy, 2.93)
f=figure(figsize=(12,5))
i=1
for kmap in [kmap_noiseless_8arcmin, kmap_noisy_8arcmin]:
ax=subplot(1,2,i)
#imshow(kmap_noiseless_8arcmin,vmin=-0.1,vmax=0.1,extent=(0,3.5,0,3.5))
im=ax.imshow(kmap,vmin=-3*std(kmap_noiseless_8arcmin),vmax=3*std(kmap_noiseless_8arcmin),extent=(0,3.5,0,3.5),cmap='PuOr')
ax.annotate(r"$\rm{%s}$"%(['noiseless','noisy'][i-1]),
xy=(0.05, 0.9), xycoords='axes fraction',fontsize=24,
bbox={'facecolor':'thistle', 'alpha':0.5})
ax.set_xlabel(r"$\rm{deg}$",fontsize=22)
ax.set_ylabel(r"$\rm{deg}$",fontsize=22)
ax.tick_params(labelsize=16)
divider=make_axes_locatable(ax)
示例13: load
# 需要导入模块: import WLanalysis [as 别名]
# 或者: from WLanalysis import smooth [as 别名]
for fn in os.listdir(tSZ_dir+'planck/'):
if fn[-3:]=='txt':
print fn
print fn[:-3]+'npy'
full_fn = tSZ_dir+'planck/'+fn
imap=WLanalysis.txt2map_fcn(full_fn, offset = False)
if fn[-3:]=='npy':
imap = load(tSZ_dir+'planck/'+fn)
if 'mask' in fn:
imshow(imap, origin='lower', vmin=0, vmax=1)
elif '857' in fn:
imshow(imap, origin='lower')
elif 'JCH_ymap' in fn:
imshow(imap, origin='lower', vmin=-2e-5, vmax=2e-5)
elif 'GARY' in fn:
imap = WLanalysis.smooth(imap, 2.5*4)
imshow(imap, origin='lower', vmin=-2e-5, vmax=2e-5)
else:
#imshow(imap, origin='lower', vmin=-3*std(imap), vmax=3*std(imap))
imshow(imap, origin='lower', vmin=-3e-6, vmax=3e-6)
title(fn[:-4])
colorbar()
savefig(plot_dir+fn[:-3]+'jpg')
close()
########### cross correlation
cat_dir = '/Users/jia/weaklensing/CFHTLenS/catalogue/'
kmapGen = lambda i: load(cat_dir+'kmap_W%i_sigma10_zcut13.npy'%(i))
PSmaskGen = lambda i: np.load(tSZ_dir+'planck/PSmaskHFIall_flipper2048_CFHTLS_W%i.npy'%(i))