本文整理汇总了Python中WLanalysis类的典型用法代码示例。如果您正苦于以下问题:Python WLanalysis类的具体用法?Python WLanalysis怎么用?Python WLanalysis使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了WLanalysis类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: OrganizeSplitFile
def OrganizeSplitFile(ifile):
'''read in one of the split file, pick out the redshift, and sort by fields, e2 is c2 correted, with e2-=c2'''
field = genfromtxt(split_dir+ifile,usecols=0,dtype=str)
field = array(map(field2int,field))
print ifile
# generate 2 random redshift and 1 peak
Pz = genfromtxt(split_dir+ifile,usecols=arange(14,84),dtype=str)
Pz = (np.core.defchararray.replace(Pz,',','')).astype(float)
seed(99)
z_rand1 = array(map(DrawRedshifts,Pz)).ravel()
seed(88)
z_rand2 = array(map(DrawRedshifts,Pz)).ravel()
z_peak = z_arr[argmax(Pz,axis=1)]
z_all = concatenate([[z_peak,], [z_rand1,], [z_rand2,]]).T
sheardata = genfromtxt(split_dir+ifile,usecols=[1,2,5,6,7,8,9,10,11,12,13,84])
ra, dec, e1, e2, w, fitclass, r, snr, mask, m, c2, mag = sheardata.T
e2 -= c2
i=0
for Wx in range(1,5):
idx=where((field==Wx)&(mask<=1.0)&(fitclass==0)&(amin(z_all,axis=-1)>=0.2)&(amax(z_all,axis=-1)<=1.3))[0]
print ifile, Wx, len(idx)/50000.0
if len(idx) > 0:
#data = (np.array([ra,dec,e1,e2,w,r,snr,m,c2,mag]).T)[idx]
data = (np.array([ra,dec,e1,e2,w,r,snr,m,c2,mag,z_peak, z_rand1, z_rand2]).T)[idx]
radeclist = sheardata[idx][:,[0,1]]
xylist = list2coords(radeclist, Wx)
xy_data = concatenate([xylist,data],axis=1)
WLanalysis.writeFits(xy_data, W_dir(Wx)+ifile+'.fit')#,fmt=['%i','%i','%s','%s','%s','%.3f'])
i+=1
示例2: TestCrossCorrelate
def TestCrossCorrelate (Wx, zcut, sigmaG):
'''Input:
Wx - one of the W1..W4 field (= 1..4)
zcut - redshift cut between KS background galaxies and forground cluster probe
sigmaG - smoothing
Output:
ell_arr, CCK, CCB
'''
galn_hi = WLanalysis.readFits(test_dir+'W%i_galn_%s_hi_sigmaG%02d.fit'%(Wx,zcut,sigmaG*10))
galn_lo = WLanalysis.readFits(test_dir+'W%i_galn_%s_lo_sigmaG%02d.fit'%(Wx,zcut,sigmaG*10))
galn_cut = 0.5*0.164794921875 #5gal/arcmin^2*arcmin^2/pix, arcmin/pix = 12.0*60**2/512.0**2 =
bmap = WLanalysis.readFits(test_dir+'W%i_Bmode_%s_hi_sigmaG%02d.fit'%(Wx,zcut,sigmaG*10))
kmap = WLanalysis.readFits(test_dir+'W%i_KS_%s_hi_sigmaG%02d.fit'%(Wx,zcut,sigmaG*10))
mask = where(galn_hi<galn_cut)
bmap[mask]=0
kmap[mask]=0
edges=linspace(5,100,11)
ell_arr, CCB = WLanalysis.CrossCorrelate (bmap,galn_lo,edges=edges)
ell_arr, CCK = WLanalysis.CrossCorrelate (kmap,galn_lo,edges=edges)
f=figure(figsize=(8,6))
ax=f.add_subplot(111)
ax.plot(ell_arr, CCB, 'ro',label='B-mode')
ax.plot(ell_arr, CCK, 'bo', label='KS')
legend()
#ax.set_xscale('log')
ax.set_xlabel('ell')
ax.set_ylabel(r'$\ell(\ell+1)P_{n\kappa}(\ell)/2\pi$')
ax.set_title('W%i_zcut%shi_sigmaG%02d'%(Wx,zcut,sigmaG*10))
#show()
savefig(plot_dir+'CC_edges_W%i_zcut%shi_sigmaG%02d.jpg'%(Wx,zcut,sigmaG*10))
close()
示例3: PeakPos
def PeakPos (Wx, z_lo=0.6, z_hi='0.6_lo',noise=False, Bmode=False):
'''For a map(kappa or bmode), find peaks, and its(RA, DEC)
return 3 columns: [kappa, RA, DEC]
'''
#print 'noise', noise, Wx
if Bmode:
kmap = bmodeGen(Wx, z=z_hi)
else:
kmap = kmapGen(Wx, z=z_hi)
ipeak_mat = WLanalysis.peaks_mat(kmap)
imask = maskGen (Wx, z=z_lo)
ipeak_mat[where(imask==0)]=nan #get ipeak_mat, masked region = nan
if noise: #find the index for peaks in noise map
idx_all = where((imask==1)&isnan(ipeak_mat))
sample = randint(0,len(idx_all[0])-1,sum(~isnan(ipeak_mat)))
idx = array([idx_all[0][sample],idx_all[1][sample]])
else:#find the index for peaks in kappa map
idx = where(~isnan(ipeak_mat)==True)
kappaPos_arr = zeros(shape=(len(idx[0]),3))#prepare array for output
for i in range(len(idx[0])):
x, y = idx[0][i], idx[1][i]#x, y
kappaPos_arr[i,0] = kmap[x, y]
x = int(x-sizes[Wx-1]/2)+1
y = int(y-sizes[Wx-1]/2)+1
x /= PPR512# convert from pixel to radians
y /= PPR512
kappaPos_arr[i,1:] = WLanalysis.gnom_inv((y, x), centers[Wx-1])
return kappaPos_arr.T
示例4: compute_GRF_PDF_ps_pk
def compute_GRF_PDF_ps_pk (r):
'''for a convergence map with filename fn, compute the PDF and the power spectrum. sizedeg = 3.5**2, or 1.7**2'''
print cosmo, r
kmap = kmapGen(r)
#kmap = load(CMBlensing_dir+'GRF_fidu/'+'GRF_fidu_%04dr.npy'%(r))
i_arr = arange(len(sigmaP_arr))
if not doGRF:
kmap_smoothed = [WLanalysis.smooth(kmap, sigmaP) for sigmaP in sigmaP_arr]
ps = WLanalysis.PowerSpectrum(kmap_smoothed[0])[1]
PDF = [PDFGen(kmap_smoothed[i], PDFbin_arr[i]) for i in i_arr]
peaks = [peaksGen(kmap_smoothed[i], peak_bins_arr[i]) for i in i_arr]
###### generate GRF
else:
ps=0
random.seed(r)
GRF = (WLanalysis.GRF_Gen(kmap)).newGRF()
#save(CMBlensing_dir+'GRF_fidu/'+'GRF_fidu_%04dr.npy'%(r), GRF)
#GRF = load(CMBlensing_dir+'GRF_fidu/'+'GRF_fidu_%04dr.npy'%(r))
GRF_smoothed = [WLanalysis.smooth(GRF, sigmaP) for sigmaP in sigmaP_arr]
PDF = [PDFGen(GRF_smoothed[i], PDFbin_arr[i]) for i in i_arr]
peaks = [peaksGen(GRF_smoothed[i], peak_bins_arr[i]) for i in i_arr]
#############
return [ps,], PDF, peaks#, PDF_GRF, peaks_GRF
示例5: partialdata2grid
def partialdata2grid (icount):
'''for a small portion of the data, put into a grid'''
print 'icount',icount
idata = load(mask_dir+'smaller/weight0_cat_W%i_step%i_start%i.npy'%(Wx,step, icount))
print 'loaded',icount
ix, iy=np.indices(idata.shape)
iy+=step*icount
#radeclist = (array(w.wcs_pix2world(ix, iy, 0)).reshape(2,-1)).T ////jia changed on 12/9, since the coordinates seems to be off..
#radeclist = (array(w.wcs_pix2world(iy, ix, 0)).reshape(2,-1)).T
#y, x = f_Wx (radeclist)
y, x = f_Wx ((array(w.wcs_pix2world(iy, ix, 0)).reshape(2,-1)).T )
print icount,'done f_wx %s'%(icount)#,time.strftime("%Y-%m-%d %H:%M")
if Wx!=1:
ipix_mask, ipix = WLanalysis.coords2grid(x,y, idata.flatten().reshape(1,-1), size=sizes[Wx-1])
else:
istep=ceil(len(y)/10.0)
ipix_mask = zeros(shape=(sizes[Wx-1], sizes[Wx-1]))
ipix = ipix_mask.copy()
jj=0
while jj< len(y):
print 'icount, jj',icount,jj
iipix_mask,iipix = WLanalysis.coords2grid(x[jj:jj+istep], y[jj:jj+istep], idata.flatten().reshape(1,-1)[:,jj:jj+istep], size=sizes[Wx-1])
ipix_mask += iipix_mask
ipix += iipix
jj+=istep
print icount,'W%i done coords2grid %s'%(Wx,icount)#,time.strftime("%Y-%m-%d %H:%M")
save(mask_dir+'smaller/weight0_W%i_%i_numpix'%(Wx,icount), ipix)
save(mask_dir+'smaller/weight0_W%i_%i_nummask'%(Wx,icount), ipix_mask)
#ipix is the num. of pixels fall in that big pix, ipix_mask is the mask
return ipix, ipix_mask
示例6: randmap
def randmap (iseed, Wx=Wx):
Me1rnd, Me2rnd = WLanalysis.rndrot(Me1, Me2, iseed=iseed)
Me1smooth = WLanalysis.weighted_smooth(Me1rnd, Mwm)
Me2smooth = WLanalysis.weighted_smooth(Me2rnd, Mwm)
kmap_rand = WLanalysis.KSvw(Me1smooth, Me2smooth)
print Wx, iseed, kmap_rand.shape
np.save(bmap_fn(Wx, iseed), kmap_rand)
示例7: iskew
def iskew (i):
print i
ikmap_NL = kmapNL(i)
ikmap_NOISY = kmapNOISY(i)
skewness_NL = [skew(WLanalysis.smooth(ikmap_NL, ismooth).flatten() ) for ismooth in sigmaG_arr*PPA_NL]
skewness_NOISY = [skew(WLanalysis.smooth(ikmap_NOISY, ismooth).flatten() ) for ismooth in sigmaG_arr*PPA_NOISY]
return [skewness_NL, skewness_NOISY]
示例8: KSmap_massproduce
def KSmap_massproduce(iiRcosmo):
'''Input:
iiRcosmo = [i, R, cosmo]
i: subfield range from (1, 2..13)
R: realization range from (1..1000)
cosmo: one of the 1000 cosmos
Return:
KS inverted map
'''
i, R, cosmo = iiRcosmo
create_kmap = 0
for sigmaG in sigmaG_arr:
KS_fn = KSfn(i, cosmo, R, sigmaG)
if not os.path.isfile(KS_fn):
create_kmap = 1
break
if create_kmap:
print 'Mass Produce, creating KS: ', i, R, cosmo
Me1, Me2 = fileGen(i, R, cosmo)
for sigmaG in sigmaG_arr:
KS_fn = KSfn(i, cosmo, R, sigmaG)
Me1_smooth = WLanalysis.weighted_smooth(Me1, Mw, PPA=PPA512, sigmaG=sigmaG)
Me2_smooth = WLanalysis.weighted_smooth(Me2, Mw, PPA=PPA512, sigmaG=sigmaG)
kmap = WLanalysis.KSvw(Me1_smooth, Me2_smooth)
np.save(KS_fn, kmap)
示例9: create_prob_plane
def create_prob_plane(psPDFpk='pk', sigmaG_idx=0):
if psPDFpk =='ps':
idx2000=where(ell_gadget<10000)[0]
obs_arr = load(CMBNG_dir+'mat/mat_ps_avg.npy')[:,idx2000]
fidu_mat = load(CMBNG_dir+'mat/mat_ps_fidu.npy')[:,idx2000]
else:
obs_arr = load(CMBNG_dir+'mat/mat_%s_sigmaG%i_avg.npy'%(psPDFpk, sigmaG_idx))
fidu_mat = load(CMBNG_dir+'mat/mat_%s_sigmaG%i_fidu.npy'%(psPDFpk, sigmaG_idx))
idx = where(~isnan(mean(fidu_mat,axis=0))&(mean(fidu_mat,axis=0)!=0))[0]
fidu_mat=fidu_mat[:,idx]
interp_cosmo=WLanalysis.buildInterpolator2D(obs_arr[:,idx], cosmo_params)
#cov_mat =
cov_mat = cov(fidu_mat,rowvar=0)/(2e4/12.5)
cov_inv = mat(cov_mat).I
def chisq_fcn(param1, param2):
model = interp_cosmo((param1,param2))
del_N = np.mat(model - mean(fidu_mat,axis=0))
chisq = float(del_N*cov_inv*del_N.T)
return chisq
prob_plane = WLanalysis.prob_plane(chisq_fcn, om_arr, si8_arr)
return prob_plane[1]
示例10: compute_GRF_PDF_ps_pk
def compute_GRF_PDF_ps_pk (cosmo, r, Gaus=0,sigmaG=8.0):
kmap = FT2real(cosmo, r, Gaus=Gaus)
ps = WLanalysis.PowerSpectrum(WLanalysis.smooth(kmap, 0.18), bins=bins)[1]#*2.0*pi/ell_arr**2
if not filtered:
kmap = WLanalysis.smooth(kmap, 2.93*sigmaG/8.0)
PDF = PDFGen(kmap, PDFbins)
peaks = peaksGen(kmap, peak_bins)
return concatenate([ps, PDF, peaks])
示例11: ips_pk_single
def ips_pk_single (R):#, sigmaG, zg, bins):
kmap = WLanalysis.readFits(KSsim_fn(i, cosmo, R, sigmaG, zg))
if pk:#peaks
mask = WLanalysis.readFits(Mask_fn(i, sigmaG))
peaks_hist = WLanalysis.peaks_mask_hist(kmap, mask, bins, kmin=kmin, kmax=kmax)
return peaks_hist
else:#powspec
ell_arr, powspec = WLanalysis.PowerSpectrum(kmap, sizedeg=12.0)
return powspec
示例12: randmap
def randmap (iseedWx):
iseed, Wx = iseedWx
Me1, Me2 = Me1_arr[Wx-1], Me2_arr[Wx-1]
Mwm = Mwm_arr[Wx-1]
Me1rnd, Me2rnd = WLanalysis.rndrot(Me1, Me2, iseed=iseed)
Me1smooth = WLanalysis.weighted_smooth(Me1rnd, Mwm)
Me2smooth = WLanalysis.weighted_smooth(Me2rnd, Mwm)
kmap_rand = WLanalysis.KSvw(Me1smooth, Me2smooth)
print Wx, iseed, kmap_rand.shape
np.save(bmap_fn(Wx, iseed), kmap_rand)
示例13: kmapPk_1sim
def kmapPk_1sim (r):
print r,'1sim'
k, s1, s2 = kappaGen_1sim(r)[:3]
A, galn = WLanalysis.coords2grid(x, y, array([s1,s2]))
Ms1,Ms2 = A
s1_smooth = WLanalysis.weighted_smooth(Ms1, galn, PPA=PPA512, sigmaG=sigmaG)
s2_smooth = WLanalysis.weighted_smooth(Ms1, galn, PPA=PPA512, sigmaG=sigmaG)
kmap = WLanalysis.KSvw(s1_smooth, s2_smooth)
pk = WLanalysis.peaks_mask_hist(kmap, mask, bins=25, kmin = -0.04, kmax = 0.12)
return pk
示例14: kmapPs
def kmapPs (r):
print r
k, s1, s2 = kappaGen(r)[:3]
A, galn = WLanalysis.coords2grid(x, y, array([s1,s2 ]))
Ms1,Ms2 = A
s1_smooth = WLanalysis.weighted_smooth(Ms1, galn, PPA=PPA512, sigmaG=sigmaG)
s2_smooth = WLanalysis.weighted_smooth(Ms1, galn, PPA=PPA512, sigmaG=sigmaG)
kmap = WLanalysis.KSvw(s1_smooth, s2_smooth)
kmap*=mask
ps = WLanalysis.PowerSpectrum(kmap,sizedeg=12.0)[-1]
return ps
示例15: FT_PowerSpectrum
def FT_PowerSpectrum (cosmo, r, bins=10, return_ell_arr=0, Gaus=0):
if Gaus:
a = FTmapGen_Gaus(r)
else:
a = FTmapGen(cosmo, r)
PS2D=np.abs(fftpack.fftshift(a))**2
ell_arr,psd1D=WLanalysis.azimuthalAverage(PS2D, bins=bins)
if return_ell_arr:
ell_arr = WLanalysis.edge2center(ell_arr)* 360./3.5
return ell_arr
else:
return psd1D