当前位置: 首页>>代码示例>>Python>>正文


Python TensorflowUtils.save_image方法代码示例

本文整理汇总了Python中TensorflowUtils.save_image方法的典型用法代码示例。如果您正苦于以下问题:Python TensorflowUtils.save_image方法的具体用法?Python TensorflowUtils.save_image怎么用?Python TensorflowUtils.save_image使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在TensorflowUtils的用法示例。


在下文中一共展示了TensorflowUtils.save_image方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: visualize

# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import save_image [as 别名]
    def visualize():
        count = 20
        z_feed = np.random.uniform(-1.0, 1.0, size=(count, FLAGS.z_dim)).astype(np.float32)
        # z_feed = np.tile(np.random.uniform(-1.0, 1.0, size=(1, FLAGS.z_dim)).astype(np.float32), (count, 1))
        # z_feed[:, 25] = sorted(10.0 * np.random.randn(count))
        image = sess.run(gen_images, feed_dict={z_vec: z_feed, train_phase: False})

        for iii in xrange(count):
            print(image.shape)
            utils.save_image(image[iii, :, :, :], IMAGE_SIZE, FLAGS.logs_dir, name=str(iii))
            print("Saving image" + str(iii))
开发者ID:shekkizh,项目名称:TensorflowProjects,代码行数:13,代码来源:Flowers_GAN.py

示例2: main

# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import save_image [as 别名]
def main(argv=None):
    keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
    image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="input_image")
    annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1], name="annotation")

    pred_annotation, logits = inference(image, keep_probability)
    tf.summary.image("input_image", image, max_outputs=2)
    tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2)
    tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2)
    loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
                                                                          labels=tf.squeeze(annotation, squeeze_dims=[3]),
                                                                          name="entropy")))
    loss_summary = tf.summary.scalar("entropy", loss)

    trainable_var = tf.trainable_variables()
    if FLAGS.debug:
        for var in trainable_var:
            utils.add_to_regularization_and_summary(var)
    train_op = train(loss, trainable_var)

    print("Setting up summary op...")
    summary_op = tf.summary.merge_all()

    print("Setting up image reader...")
    train_records, valid_records = scene_parsing.read_dataset(FLAGS.data_dir)
    print(len(train_records))
    print(len(valid_records))

    print("Setting up dataset reader")
    image_options = {'resize': True, 'resize_size': IMAGE_SIZE}
    if FLAGS.mode == 'train':
        train_dataset_reader = dataset.BatchDatset(train_records, image_options)
    validation_dataset_reader = dataset.BatchDatset(valid_records, image_options)

    sess = tf.Session()

    print("Setting up Saver...")
    saver = tf.train.Saver()

    # create two summary writers to show training loss and validation loss in the same graph
    # need to create two folders 'train' and 'validation' inside FLAGS.logs_dir
    train_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/train', sess.graph)
    validation_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/validation')

    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print("Model restored...")

    if FLAGS.mode == "train":
        for itr in xrange(MAX_ITERATION):
            train_images, train_annotations = train_dataset_reader.next_batch(FLAGS.batch_size)
            feed_dict = {image: train_images, annotation: train_annotations, keep_probability: 0.85}

            sess.run(train_op, feed_dict=feed_dict)

            if itr % 10 == 0:
                train_loss, summary_str = sess.run([loss, loss_summary], feed_dict=feed_dict)
                print("Step: %d, Train_loss:%g" % (itr, train_loss))
                train_writer.add_summary(summary_str, itr)

            if itr % 500 == 0:
                valid_images, valid_annotations = validation_dataset_reader.next_batch(FLAGS.batch_size)
                valid_loss, summary_sva = sess.run([loss, loss_summary], feed_dict={image: valid_images, annotation: valid_annotations,
                                                       keep_probability: 1.0})
                print("%s ---> Validation_loss: %g" % (datetime.datetime.now(), valid_loss))

                # add validation loss to TensorBoard
                validation_writer.add_summary(summary_sva, itr)
                saver.save(sess, FLAGS.logs_dir + "model.ckpt", itr)

    elif FLAGS.mode == "visualize":
        valid_images, valid_annotations = validation_dataset_reader.get_random_batch(FLAGS.batch_size)
        pred = sess.run(pred_annotation, feed_dict={image: valid_images, annotation: valid_annotations,
                                                    keep_probability: 1.0})
        valid_annotations = np.squeeze(valid_annotations, axis=3)
        pred = np.squeeze(pred, axis=3)

        for itr in range(FLAGS.batch_size):
            utils.save_image(valid_images[itr].astype(np.uint8), FLAGS.logs_dir, name="inp_" + str(5+itr))
            utils.save_image(valid_annotations[itr].astype(np.uint8), FLAGS.logs_dir, name="gt_" + str(5+itr))
            utils.save_image(pred[itr].astype(np.uint8), FLAGS.logs_dir, name="pred_" + str(5+itr))
            print("Saved image: %d" % itr)
开发者ID:sdjsngs,项目名称:FCN.tensorflow,代码行数:86,代码来源:FCN.py


注:本文中的TensorflowUtils.save_image方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。