本文整理汇总了Python中TensorflowUtils.save_image方法的典型用法代码示例。如果您正苦于以下问题:Python TensorflowUtils.save_image方法的具体用法?Python TensorflowUtils.save_image怎么用?Python TensorflowUtils.save_image使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TensorflowUtils
的用法示例。
在下文中一共展示了TensorflowUtils.save_image方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: visualize
# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import save_image [as 别名]
def visualize():
count = 20
z_feed = np.random.uniform(-1.0, 1.0, size=(count, FLAGS.z_dim)).astype(np.float32)
# z_feed = np.tile(np.random.uniform(-1.0, 1.0, size=(1, FLAGS.z_dim)).astype(np.float32), (count, 1))
# z_feed[:, 25] = sorted(10.0 * np.random.randn(count))
image = sess.run(gen_images, feed_dict={z_vec: z_feed, train_phase: False})
for iii in xrange(count):
print(image.shape)
utils.save_image(image[iii, :, :, :], IMAGE_SIZE, FLAGS.logs_dir, name=str(iii))
print("Saving image" + str(iii))
示例2: main
# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import save_image [as 别名]
def main(argv=None):
keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="input_image")
annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1], name="annotation")
pred_annotation, logits = inference(image, keep_probability)
tf.summary.image("input_image", image, max_outputs=2)
tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2)
tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2)
loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
labels=tf.squeeze(annotation, squeeze_dims=[3]),
name="entropy")))
loss_summary = tf.summary.scalar("entropy", loss)
trainable_var = tf.trainable_variables()
if FLAGS.debug:
for var in trainable_var:
utils.add_to_regularization_and_summary(var)
train_op = train(loss, trainable_var)
print("Setting up summary op...")
summary_op = tf.summary.merge_all()
print("Setting up image reader...")
train_records, valid_records = scene_parsing.read_dataset(FLAGS.data_dir)
print(len(train_records))
print(len(valid_records))
print("Setting up dataset reader")
image_options = {'resize': True, 'resize_size': IMAGE_SIZE}
if FLAGS.mode == 'train':
train_dataset_reader = dataset.BatchDatset(train_records, image_options)
validation_dataset_reader = dataset.BatchDatset(valid_records, image_options)
sess = tf.Session()
print("Setting up Saver...")
saver = tf.train.Saver()
# create two summary writers to show training loss and validation loss in the same graph
# need to create two folders 'train' and 'validation' inside FLAGS.logs_dir
train_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/train', sess.graph)
validation_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/validation')
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print("Model restored...")
if FLAGS.mode == "train":
for itr in xrange(MAX_ITERATION):
train_images, train_annotations = train_dataset_reader.next_batch(FLAGS.batch_size)
feed_dict = {image: train_images, annotation: train_annotations, keep_probability: 0.85}
sess.run(train_op, feed_dict=feed_dict)
if itr % 10 == 0:
train_loss, summary_str = sess.run([loss, loss_summary], feed_dict=feed_dict)
print("Step: %d, Train_loss:%g" % (itr, train_loss))
train_writer.add_summary(summary_str, itr)
if itr % 500 == 0:
valid_images, valid_annotations = validation_dataset_reader.next_batch(FLAGS.batch_size)
valid_loss, summary_sva = sess.run([loss, loss_summary], feed_dict={image: valid_images, annotation: valid_annotations,
keep_probability: 1.0})
print("%s ---> Validation_loss: %g" % (datetime.datetime.now(), valid_loss))
# add validation loss to TensorBoard
validation_writer.add_summary(summary_sva, itr)
saver.save(sess, FLAGS.logs_dir + "model.ckpt", itr)
elif FLAGS.mode == "visualize":
valid_images, valid_annotations = validation_dataset_reader.get_random_batch(FLAGS.batch_size)
pred = sess.run(pred_annotation, feed_dict={image: valid_images, annotation: valid_annotations,
keep_probability: 1.0})
valid_annotations = np.squeeze(valid_annotations, axis=3)
pred = np.squeeze(pred, axis=3)
for itr in range(FLAGS.batch_size):
utils.save_image(valid_images[itr].astype(np.uint8), FLAGS.logs_dir, name="inp_" + str(5+itr))
utils.save_image(valid_annotations[itr].astype(np.uint8), FLAGS.logs_dir, name="gt_" + str(5+itr))
utils.save_image(pred[itr].astype(np.uint8), FLAGS.logs_dir, name="pred_" + str(5+itr))
print("Saved image: %d" % itr)