本文整理汇总了Python中TensorflowUtils.conv2d_strided方法的典型用法代码示例。如果您正苦于以下问题:Python TensorflowUtils.conv2d_strided方法的具体用法?Python TensorflowUtils.conv2d_strided怎么用?Python TensorflowUtils.conv2d_strided使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TensorflowUtils
的用法示例。
在下文中一共展示了TensorflowUtils.conv2d_strided方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: inference_conv
# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import conv2d_strided [as 别名]
def inference_conv(image):
# incomplete :/
image_reshaped = tf.reshape(image, [-1, IMAGE_SIZE, IMAGE_SIZE, 1])
with tf.name_scope("conv1") as scope:
W_conv1 = utils.weight_variable([3, 3, 1, 32], name="W_conv1")
b_conv1 = utils.bias_variable([32], name="b_conv1")
add_to_reg_loss_and_summary(W_conv1, b_conv1)
h_conv1 = tf.nn.tanh(utils.conv2d_basic(image_reshaped, W_conv1, b_conv1))
with tf.name_scope("conv2") as scope:
W_conv2 = utils.weight_variable([3, 3, 32, 64], name="W_conv2")
b_conv2 = utils.bias_variable([64], name="b_conv2")
add_to_reg_loss_and_summary(W_conv2, b_conv2)
h_conv2 = tf.nn.tanh(utils.conv2d_strided(h_conv1, W_conv2, b_conv2))
with tf.name_scope("conv3") as scope:
W_conv3 = utils.weight_variable([3, 3, 64, 128], name="W_conv3")
b_conv3 = utils.bias_variable([128], name="b_conv3")
add_to_reg_loss_and_summary(W_conv3, b_conv3)
h_conv3 = tf.nn.tanh(utils.conv2d_strided(h_conv2, W_conv3, b_conv3))
with tf.name_scope("conv4") as scope:
W_conv4 = utils.weight_variable([3, 3, 128, 256], name="W_conv4")
b_conv4 = utils.bias_variable([256], name="b_conv4")
add_to_reg_loss_and_summary(W_conv4, b_conv4)
h_conv4 = tf.nn.tanh(utils.conv2d_strided(h_conv3, W_conv4, b_conv4))
示例2: encoder_conv
# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import conv2d_strided [as 别名]
def encoder_conv(image):
with tf.name_scope("enc_conv1") as scope:
W_conv1 = utils.weight_variable([3, 3, 3, 32], name="W_conv1")
b_conv1 = utils.bias_variable([32], name="b_conv1")
h_conv1 = tf.nn.tanh(utils.conv2d_strided(image, W_conv1, b_conv1))
with tf.name_scope("enc_conv2") as scope:
W_conv2 = utils.weight_variable([3, 3, 32, 64], name="W_conv2")
b_conv2 = utils.bias_variable([64], name="b_conv2")
h_conv2 = tf.nn.tanh(utils.conv2d_strided(h_conv1, W_conv2, b_conv2))
with tf.name_scope("enc_conv3") as scope:
W_conv3 = utils.weight_variable([3, 3, 64, 128], name="W_conv3")
b_conv3 = utils.bias_variable([128], name="b_conv3")
h_conv3 = tf.nn.tanh(utils.conv2d_strided(h_conv2, W_conv3, b_conv3))
with tf.name_scope("enc_conv4") as scope:
W_conv4 = utils.weight_variable([3, 3, 128, 256], name="W_conv4")
b_conv4 = utils.bias_variable([256], name="b_conv4")
h_conv4 = tf.nn.tanh(utils.conv2d_strided(h_conv3, W_conv4, b_conv4))
with tf.name_scope("enc_fc") as scope:
image_size = IMAGE_SIZE // 16
h_conv4_flatten = tf.reshape(h_conv4, [-1, image_size * image_size * 256])
W_fc5 = utils.weight_variable([image_size * image_size * 256, 512], name="W_fc5")
b_fc5 = utils.bias_variable([512], name="b_fc5")
encoder_val = tf.matmul(h_conv4_flatten, W_fc5) + b_fc5
return encoder_val
示例3: encoder
# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import conv2d_strided [as 别名]
def encoder(dataset, train_mode):
with tf.variable_scope("Encoder"):
with tf.name_scope("enc_conv1") as scope:
W_conv1 = utils.weight_variable_xavier_initialized([3, 3, 3, 32], name="W_conv1")
b_conv1 = utils.bias_variable([32], name="b_conv1")
h_conv1 = utils.conv2d_strided(dataset, W_conv1, b_conv1)
h_bn1 = utils.batch_norm(h_conv1, 32, train_mode, scope="conv1_bn")
h_relu1 = tf.nn.relu(h_bn1)
with tf.name_scope("enc_conv2") as scope:
W_conv2 = utils.weight_variable_xavier_initialized([3, 3, 32, 64], name="W_conv2")
b_conv2 = utils.bias_variable([64], name="b_conv2")
h_conv2 = utils.conv2d_strided(h_relu1, W_conv2, b_conv2)
h_bn2 = utils.batch_norm(h_conv2, 64, train_mode, scope="conv2_bn")
h_relu2 = tf.nn.relu(h_bn2)
with tf.name_scope("enc_conv3") as scope:
W_conv3 = utils.weight_variable_xavier_initialized([3, 3, 64, 128], name="W_conv3")
b_conv3 = utils.bias_variable([128], name="b_conv3")
h_conv3 = utils.conv2d_strided(h_relu2, W_conv3, b_conv3)
h_bn3 = utils.batch_norm(h_conv3, 128, train_mode, scope="conv3_bn")
h_relu3 = tf.nn.relu(h_bn3)
with tf.name_scope("enc_conv4") as scope:
W_conv4 = utils.weight_variable_xavier_initialized([3, 3, 128, 256], name="W_conv4")
b_conv4 = utils.bias_variable([256], name="b_conv4")
h_conv4 = utils.conv2d_strided(h_relu3, W_conv4, b_conv4)
h_bn4 = utils.batch_norm(h_conv4, 256, train_mode, scope="conv4_bn")
h_relu4 = tf.nn.relu(h_bn4)
with tf.name_scope("enc_conv5") as scope:
W_conv5 = utils.weight_variable_xavier_initialized([3, 3, 256, 512], name="W_conv5")
b_conv5 = utils.bias_variable([512], name="b_conv5")
h_conv5 = utils.conv2d_strided(h_relu4, W_conv5, b_conv5)
h_bn5 = utils.batch_norm(h_conv5, 512, train_mode, scope="conv5_bn")
h_relu5 = tf.nn.relu(h_bn5)
with tf.name_scope("enc_fc") as scope:
image_size = IMAGE_SIZE // 32
h_relu5_flatten = tf.reshape(h_relu5, [-1, image_size * image_size * 512])
W_fc = utils.weight_variable([image_size * image_size * 512, 1024], name="W_fc")
b_fc = utils.bias_variable([1024], name="b_fc")
encoder_val = tf.matmul(h_relu5_flatten, W_fc) + b_fc
return encoder_val
示例4: inference_strided
# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import conv2d_strided [as 别名]
def inference_strided(input_image):
W1 = utils.weight_variable([9, 9, 3, 32])
b1 = utils.bias_variable([32])
tf.histogram_summary("W1", W1)
tf.histogram_summary("b1", b1)
h_conv1 = tf.nn.relu(utils.conv2d_basic(input_image, W1, b1))
W2 = utils.weight_variable([3, 3, 32, 64])
b2 = utils.bias_variable([64])
tf.histogram_summary("W2", W2)
tf.histogram_summary("b2", b2)
h_conv2 = tf.nn.relu(utils.conv2d_strided(h_conv1, W2, b2))
W3 = utils.weight_variable([3, 3, 64, 128])
b3 = utils.bias_variable([128])
tf.histogram_summary("W3", W3)
tf.histogram_summary("b3", b3)
h_conv3 = tf.nn.relu(utils.conv2d_strided(h_conv2, W3, b3))
# upstrides
W4 = utils.weight_variable([3, 3, 64, 128])
b4 = utils.bias_variable([64])
tf.histogram_summary("W4", W4)
tf.histogram_summary("b4", b4)
# print h_conv3.get_shape()
# print W4.get_shape()
h_conv4 = tf.nn.relu(utils.conv2d_transpose_strided(h_conv3, W4, b4))
W5 = utils.weight_variable([3, 3, 32, 64])
b5 = utils.bias_variable([32])
tf.histogram_summary("W5", W5)
tf.histogram_summary("b5", b5)
h_conv5 = tf.nn.relu(utils.conv2d_transpose_strided(h_conv4, W5, b5))
W6 = utils.weight_variable([9, 9, 32, 3])
b6 = utils.bias_variable([3])
tf.histogram_summary("W6", W6)
tf.histogram_summary("b6", b6)
pred_image = tf.nn.tanh(utils.conv2d_basic(h_conv5, W6, b6))
return pred_image
示例5: inference_fully_convolutional
# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import conv2d_strided [as 别名]
def inference_fully_convolutional(dataset):
'''
Fully convolutional inference on notMNIST dataset
:param datset: [batch_size, 28*28*1] tensor
:return: logits
'''
dataset_reshaped = tf.reshape(dataset, [-1, 28, 28, 1])
with tf.name_scope("conv1") as scope:
W_conv1 = utils.weight_variable_xavier_initialized([3, 3, 1, 32], name="W_conv1")
b_conv1 = utils.bias_variable([32], name="b_conv1")
h_conv1 = tf.nn.relu(utils.conv2d_strided(dataset_reshaped, W_conv1, b_conv1))
with tf.name_scope("conv2") as scope:
W_conv2 = utils.weight_variable_xavier_initialized([3, 3, 32, 64], name="W_conv2")
b_conv2 = utils.bias_variable([64], name="b_conv2")
h_conv2 = tf.nn.relu(utils.conv2d_strided(h_conv1, W_conv2, b_conv2))
with tf.name_scope("conv3") as scope:
W_conv3 = utils.weight_variable_xavier_initialized([3, 3, 64, 128], name="W_conv3")
b_conv3 = utils.bias_variable([128], name="b_conv3")
h_conv3 = tf.nn.relu(utils.conv2d_strided(h_conv2, W_conv3, b_conv3))
with tf.name_scope("conv4") as scope:
W_conv4 = utils.weight_variable_xavier_initialized([3, 3, 128, 256], name="W_conv4")
b_conv4 = utils.bias_variable([256], name="b_conv4")
h_conv4 = tf.nn.relu(utils.conv2d_strided(h_conv3, W_conv4, b_conv4))
with tf.name_scope("conv5") as scope:
# W_conv5 = utils.weight_variable_xavier_initialized([2, 2, 256, 512], name="W_conv5")
# b_conv5 = utils.bias_variable([512], name="b_conv5")
# h_conv5 = tf.nn.relu(utils.conv2d_strided(h_conv4, W_conv5, b_conv5))
h_conv5 = utils.avg_pool_2x2(h_conv4)
with tf.name_scope("conv6") as scope:
W_conv6 = utils.weight_variable_xavier_initialized([1, 1, 256, 10], name="W_conv6")
b_conv6 = utils.bias_variable([10], name="b_conv6")
logits = tf.nn.relu(utils.conv2d_basic(h_conv5, W_conv6, b_conv6))
print logits.get_shape()
logits = tf.reshape(logits, [-1, 10])
return logits
示例6: discriminator
# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import conv2d_strided [as 别名]
def discriminator(input_images, train_mode):
# dropout_prob = 1.0
# if train_mode:
# dropout_prob = 0.5
W_conv0 = utils.weight_variable([5, 5, NUM_OF_CHANNELS, 64 * 1], name="W_conv0")
b_conv0 = utils.bias_variable([64 * 1], name="b_conv0")
h_conv0 = utils.conv2d_strided(input_images, W_conv0, b_conv0)
h_bn0 = h_conv0 # utils.batch_norm(h_conv0, 64 * 1, train_mode, scope="disc_bn0")
h_relu0 = utils.leaky_relu(h_bn0, 0.2, name="h_relu0")
utils.add_activation_summary(h_relu0)
W_conv1 = utils.weight_variable([5, 5, 64 * 1, 64 * 2], name="W_conv1")
b_conv1 = utils.bias_variable([64 * 2], name="b_conv1")
h_conv1 = utils.conv2d_strided(h_relu0, W_conv1, b_conv1)
h_bn1 = utils.batch_norm(h_conv1, 64 * 2, train_mode, scope="disc_bn1")
h_relu1 = utils.leaky_relu(h_bn1, 0.2, name="h_relu1")
utils.add_activation_summary(h_relu1)
W_conv2 = utils.weight_variable([5, 5, 64 * 2, 64 * 4], name="W_conv2")
b_conv2 = utils.bias_variable([64 * 4], name="b_conv2")
h_conv2 = utils.conv2d_strided(h_relu1, W_conv2, b_conv2)
h_bn2 = utils.batch_norm(h_conv2, 64 * 4, train_mode, scope="disc_bn2")
h_relu2 = utils.leaky_relu(h_bn2, 0.2, name="h_relu2")
utils.add_activation_summary(h_relu2)
W_conv3 = utils.weight_variable([5, 5, 64 * 4, 64 * 8], name="W_conv3")
b_conv3 = utils.bias_variable([64 * 8], name="b_conv3")
h_conv3 = utils.conv2d_strided(h_relu2, W_conv3, b_conv3)
h_bn3 = utils.batch_norm(h_conv3, 64 * 8, train_mode, scope="disc_bn3")
h_relu3 = utils.leaky_relu(h_bn3, 0.2, name="h_relu3")
utils.add_activation_summary(h_relu3)
shape = h_relu3.get_shape().as_list()
h_3 = tf.reshape(h_relu3, [FLAGS.batch_size, (IMAGE_SIZE // 16) * (IMAGE_SIZE // 16) * shape[3]])
W_4 = utils.weight_variable([h_3.get_shape().as_list()[1], 1], name="W_4")
b_4 = utils.bias_variable([1], name="b_4")
h_4 = tf.matmul(h_3, W_4) + b_4
return tf.nn.sigmoid(h_4), h_4, h_relu3