当前位置: 首页>>代码示例>>Python>>正文


Python TensorflowUtils.get_tensor_size方法代码示例

本文整理汇总了Python中TensorflowUtils.get_tensor_size方法的典型用法代码示例。如果您正苦于以下问题:Python TensorflowUtils.get_tensor_size方法的具体用法?Python TensorflowUtils.get_tensor_size怎么用?Python TensorflowUtils.get_tensor_size使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在TensorflowUtils的用法示例。


在下文中一共展示了TensorflowUtils.get_tensor_size方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import get_tensor_size [as 别名]
def main(argv=None):
    utils.maybe_download_and_extract(FLAGS.model_dir, MODEL_URL)
    utils.maybe_download_and_extract(FLAGS.data_dir, DATA_URL, is_tarfile=True)
    model_data = get_model_data()
    model_params = {}

    mean = model_data['normalization'][0][0][0]
    model_params['mean_pixel'] = np.mean(mean, axis=(0, 1))

    model_params['weights'] = np.squeeze(model_data['layers'])

    style_image = get_image(FLAGS.style_path)
    processed_style = utils.process_image(style_image, model_params['mean_pixel']).astype(np.float32)
    style_net = vgg_net(model_params['weights'], processed_style)
    tf.image_summary("Style_Image", style_image)

    with tf.Session() as sess:
        print "Evaluating style features..."
        style_features = {}
        for layer in STYLE_LAYERS:
            features = style_net[layer].eval()
            features = np.reshape(features, (-1, features.shape[3]))
            style_gram = np.matmul(features.T, features) / features.size
            style_features[layer] = style_gram

        print "Reading image inputs"
        input_image, input_content = read_input(model_params)

        print "Setting up inference"
        output_image = 255 * inference_strided(input_image)

        print "Creating saver.."
        saver = tf.train.Saver()
        ckpt = tf.train.get_checkpoint_state(FLAGS.log_dir)
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
            print "Model restored..."

        if FLAGS.mode == "test":
            test(sess, output_image, model_params['mean_pixel'])
            return

        print "Calculating content loss..."
        image_net = vgg_net(model_params['weights'], output_image)
        content_loss = CONTENT_WEIGHT * tf.nn.l2_loss(image_net[CONTENT_LAYER] - input_content) / utils.get_tensor_size(
            input_content)
        print content_loss.get_shape()
        tf.scalar_summary("Content_loss", content_loss)

        print "Calculating style loss..."
        style_losses = []
        for layer in STYLE_LAYERS:
            image_layer = image_net[layer]
            _, height, width, number = map(lambda i: i.value, image_layer.get_shape())
            size = height * width * number
            feats = tf.reshape(image_layer, (-1, number))
            image_gram = tf.matmul(tf.transpose(feats), feats) / size
            style_losses.append(0.5 * tf.nn.l2_loss(image_gram - style_features[layer]))

        style_loss = STYLE_WEIGHT * reduce(tf.add, style_losses)
        print style_loss.get_shape()
        tf.scalar_summary("Style_loss", style_loss)

        print "Calculating variational loss..."
        tv_y_size = utils.get_tensor_size(output_image[:, 1:, :, :])
        tv_x_size = utils.get_tensor_size(output_image[:, :, 1:, :])
        tv_loss = VARIATION_WEIGHT * (
            (tf.nn.l2_loss(output_image[:, 1:, :, :] - output_image[:, :IMAGE_SIZE - 1, :, :]) /
             tv_y_size) +
            (tf.nn.l2_loss(output_image[:, :, 1:, :] - output_image[:, :, :IMAGE_SIZE - 1, :]) /
             tv_x_size))
        print tv_loss.get_shape()
        tf.scalar_summary("Variation_loss", tv_loss)

        loss = content_loss + style_loss + tv_loss
        tf.scalar_summary("Total_loss", loss)
        print "Setting up train operation..."
        train_step = tf.train.AdamOptimizer(LEARNING_RATE).minimize(loss)

        print "Setting up summary write"
        summary_writer = tf.train.SummaryWriter(FLAGS.log_dir, sess.graph_def)
        summary_op = tf.merge_all_summaries()

        print "initializing all variables"
        sess.run(tf.initialize_all_variables())

        tf.train.start_queue_runners(sess=sess)
        print "Running training..."

        for step in range(MAX_ITERATIONS):

            if step % 10 == 0:
                this_loss, summary_str = sess.run([loss, summary_op])
                summary_writer.add_summary(summary_str, global_step=step)

                print('%s : Step %d' % (datetime.now(), step)),
                print('total loss: %g' % this_loss)

            if step % 100 == 0:
                print ("Step %d" % step),
#.........这里部分代码省略.........
开发者ID:RosieCampbell,项目名称:TensorflowProjects,代码行数:103,代码来源:GenerativeNeuralStyle.py

示例2: scatter_subtract

# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import get_tensor_size [as 别名]
 def scatter_subtract(variables1, variables2):
     shape = utils.get_tensor_size(variables2)
     values, indices = tf.nn.top_k(-1 * variables1, tf.cast(k * shape / 100, tf.int32))
     return tf.scatter_sub(variables2, indices, values)
开发者ID:shekkizh,项目名称:TensorflowProjects,代码行数:6,代码来源:MagnitudeBased_2.py

示例3: scatter_add

# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import get_tensor_size [as 别名]
 def scatter_add(variables):
     shape = utils.get_tensor_size(variables)
     values, indices = tf.nn.top_k(-1 * variables, tf.cast(k * shape / 100, tf.int32))
     return tf.scatter_add(variables, indices, values)
开发者ID:shekkizh,项目名称:TensorflowProjects,代码行数:6,代码来源:MagnitudeBased_2.py

示例4: main

# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import get_tensor_size [as 别名]
def main(argv=None):
    utils.maybe_download_and_extract(FLAGS.model_dir, DATA_URL)
    model_data = get_model_data()

    mean = model_data['normalization'][0][0][0]
    mean_pixel = np.mean(mean, axis=(0, 1))

    weights = np.squeeze(model_data['layers'])

    content_image = get_image(FLAGS.content_path)
    print content_image.shape
    processed_content = utils.process_image(content_image, mean_pixel).astype(np.float32)
    style_image = get_image(FLAGS.style_path)
    processed_style = utils.process_image(style_image, mean_pixel).astype(np.float32)

    content_net = vgg_net(weights, processed_content)

    style_net = vgg_net(weights, processed_style)

    dummy_image = utils.weight_variable(content_image.shape, stddev=np.std(content_image) * 0.1)
    image_net = vgg_net(weights, dummy_image)

    with tf.Session() as sess:
        content_losses = []
        for layer in CONTENT_LAYERS:
            feature = content_net[layer].eval()
            content_losses.append(tf.nn.l2_loss(image_net[layer] - feature))
        content_loss = CONTENT_WEIGHT * reduce(tf.add, content_losses)

        style_losses = []
        for layer in STYLE_LAYERS:
            features = style_net[layer].eval()
            features = np.reshape(features, (-1, features.shape[3]))
            style_gram = np.matmul(features.T, features) / features.size

            image_layer = image_net[layer]
            _, height, width, number = map(lambda i: i.value, image_layer.get_shape())
            size = height * width * number
            feats = tf.reshape(image_layer, (-1, number))
            image_gram = tf.matmul(tf.transpose(feats), feats) / size
            style_losses.append(0.5*tf.nn.l2_loss(image_gram - style_gram))
        style_loss = STYLE_WEIGHT * reduce(tf.add, style_losses)

        tv_y_size = utils.get_tensor_size(dummy_image[:, 1:, :, :])
        tv_x_size = utils.get_tensor_size(dummy_image[:, :, 1:, :])
        tv_loss = VARIATION_WEIGHT * (
            (tf.nn.l2_loss(dummy_image[:, 1:, :, :] - dummy_image[:, :content_image.shape[1] - 1, :, :]) /
             tv_y_size) +
           (tf.nn.l2_loss(dummy_image[:, :, 1:, :] - dummy_image[:, :, :content_image.shape[2] - 1, :]) /
             tv_x_size))

        loss = content_loss + style_loss + tv_loss
        train_step = tf.train.MomentumOptimizer(LEARNING_RATE,MOMENTUM).minimize(loss)

        best_loss = float('inf')
        best = None
        sess.run(tf.initialize_all_variables())

        for i in range(1, MAX_ITERATIONS):
            train_step.run()

            if i % 10 == 0 or i == MAX_ITERATIONS - 1:
                this_loss = loss.eval()
                print('Step %d' % (i)),
                print('    total loss: %g' % this_loss)

                if this_loss < best_loss:
                    best_loss = this_loss
                    best = dummy_image.eval()
                    output = utils.unprocess_image(best.reshape(content_image.shape[1:]), mean_pixel)
                    scipy.misc.imsave("output_check.png", output)

            if i % 100 == 0 or i == MAX_ITERATIONS - 1:
                print('  content loss: %g' % content_loss.eval()),
                print('    style loss: %g' % style_loss.eval()),
                print('       tv loss: %g' % tv_loss.eval())

    output = utils.unprocess_image(best.reshape(content_image.shape[1:]), mean_pixel)
    scipy.misc.imsave("output.png", output)
开发者ID:RosieCampbell,项目名称:TensorflowProjects,代码行数:81,代码来源:NeuralStyle.py

示例5: scatter_restore

# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import get_tensor_size [as 别名]
 def scatter_restore(saliency, variables1, variables2):
     shape = utils.get_tensor_size(variables2)
     values, indices = tf.nn.top_k(-1 * saliency, tf.cast(k * shape / 100, tf.int32))
     values = tf.gather(variables1, indices)
     return tf.scatter_update(variables2, indices, values)
开发者ID:shekkizh,项目名称:TensorflowProjects,代码行数:7,代码来源:OptimalBrainDamage.py

示例6: scatter_update

# 需要导入模块: import TensorflowUtils [as 别名]
# 或者: from TensorflowUtils import get_tensor_size [as 别名]
 def scatter_update(saliency, variables):
     shape = utils.get_tensor_size(variables)
     # print(utils.get_tensor_size(saliency))
     # print(shape)
     values, indices = tf.nn.top_k(-1 * saliency, tf.cast(k * shape / 100, tf.int32))
     return tf.scatter_update(variables, indices, tf.zeros_like(values))
开发者ID:shekkizh,项目名称:TensorflowProjects,代码行数:8,代码来源:OptimalBrainDamage.py


注:本文中的TensorflowUtils.get_tensor_size方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。