本文整理汇总了Python中RUtil.run_plotter_no_table方法的典型用法代码示例。如果您正苦于以下问题:Python RUtil.run_plotter_no_table方法的具体用法?Python RUtil.run_plotter_no_table怎么用?Python RUtil.run_plotter_no_table使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类RUtil
的用法示例。
在下文中一共展示了RUtil.run_plotter_no_table方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_r_tikz_stub
# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter_no_table [as 别名]
def get_r_tikz_stub():
user_script = RUtil.g_stub
device_name = "tikz"
retcode, r_out, r_err, tikz_code = RUtil.run_plotter_no_table(user_script, device_name)
if retcode:
raise RUtil.RError(r_err)
return tikz_code
示例2: get_response_content
# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter_no_table [as 别名]
def get_response_content(fs):
# define some fixed values
N_diploid = 6
N_hap = 2 * N_diploid
plot_density = 8
# define some mutation rates
theta_values = [0.001, 0.01, 0.1, 1.0]
# define some selection coefficients to plot
Ns_low = 0.0
Ns_high = 3.0
Ns_values = np.linspace(Ns_low, Ns_high, 3 * plot_density + 1)
# get the values for each h
Nr_values = (0, 5)
arr_0 = get_plot_array(N_diploid, Nr_values[0], theta_values, Ns_values)
arr_1 = get_plot_array(N_diploid, Nr_values[1], theta_values, Ns_values)
ylab = '"expected returns to AB"'
# define x and y plot limits
xlim = (Ns_low, Ns_high)
ylim = (np.min((arr_0, arr_1)), np.max((arr_0, arr_1)))
ylogstr = '""'
# http://sphaerula.com/legacy/R/multiplePlotFigure.html
out = StringIO()
print >> out, mk_call_str("par", mfrow="c(1,2)", oma="c(0,0,2,0)")
print >> out, get_plot("left", Nr_values[0], arr_0, theta_values, Ns_values, xlim, ylim, ylogstr, ylab)
print >> out, get_plot("right", Nr_values[1], arr_1, theta_values, Ns_values, xlim, ylim, ylogstr, '""')
print >> out, mk_call_str("title", '"expected number of returns to AB, 2N=%s"' % N_hap, outer="TRUE")
script = out.getvalue().rstrip()
# create the R plot image
device_name = Form.g_imageformat_to_r_function[fs.imageformat]
retcode, r_out, r_err, image_data = RUtil.run_plotter_no_table(script, device_name)
if retcode:
raise RUtil.RError(r_err)
return image_data
示例3: get_response_content
# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter_no_table [as 别名]
def get_response_content(fs):
# define the initial frequency
p = 0.1
# define some selection coefficients to plot
h_low = 0.2
h_high = 0.8
h_values = np.linspace(h_low, h_high, 6*10 + 1)
# define some dominance coefficients
hs_values = [-0.2, -0.05, 0, 0.05, 0.2]
colors = ['blue', 'green', 'black', 'orange', 'red']
# get the values for each h
arr = []
for hs in hs_values:
v = [kimura.get_fixation_probability_chen(p, hs/h, h) for h in h_values]
arr.append(v)
#
# define the r script
out = StringIO()
print >> out, 'h.values <- c', str(tuple(h_values))
print >> out, 'ha <- c', str(tuple(arr[0]))
print >> out, 'hb <- c', str(tuple(arr[1]))
print >> out, 'hc <- c', str(tuple(arr[2]))
print >> out, 'hd <- c', str(tuple(arr[3]))
print >> out, 'he <- c', str(tuple(arr[4]))
print >> out, mk_call_str('plot', 'h.values', 'ha',
type='"l"',
xlab='"h"',
ylab='"probability of eventual fixation"',
main=(
'"fixation probabilities for various h*s ; '
's = 2*N*sigma ; p0 = %s"' % p),
ylim='c(0, 0.2)',
col='"%s"' % colors[0],
)
print >> out, mk_call_str('lines', 'h.values', 'hb', col='"%s"' % colors[1])
print >> out, mk_call_str('lines', 'h.values', 'hc', col='"%s"' % colors[2])
print >> out, mk_call_str('lines', 'h.values', 'hd', col='"%s"' % colors[3])
print >> out, mk_call_str('lines', 'h.values', 'he', col='"%s"' % colors[4])
script = out.getvalue().rstrip()
# create the R plot image
device_name = Form.g_imageformat_to_r_function[fs.imageformat]
retcode, r_out, r_err, image_data = RUtil.run_plotter_no_table(
script, device_name)
if retcode:
raise RUtil.RError(r_err)
return image_data
示例4: get_response_content
# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter_no_table [as 别名]
def get_response_content(fs):
# define the initial frequency
p = 0.8
# define some selection coefficients to plot
low = -5
high = 5
s_values = np.linspace(low, high, (high - low) * 20 + 1)
# define some dominance coefficients
h_values = [2, 3, 5, 7]
# get the values for each h
arr = []
for h in h_values:
v = [kimura.get_fixation_probability_chen(p, s, h) for s in s_values]
arr.append(v)
#
# define the r script
out = StringIO()
print >> out, 'title.string <- "my title"'
print >> out, "s.values <- c", str(tuple(s_values))
print >> out, "ha <- c", str(tuple(arr[0]))
print >> out, "hb <- c", str(tuple(arr[1]))
print >> out, "hc <- c", str(tuple(arr[2]))
print >> out, "hd <- c", str(tuple(arr[3]))
print >> out, mk_call_str(
"plot",
"s.values",
"ha",
type='"l"',
xlab='"selection coefficient (s)"',
ylab='"probability of eventual fixation"',
main='"fixation probabilities for various h ; p0 = 0.8"',
ylim="c(0.5,1)",
)
print >> out, mk_call_str("lines", "s.values", "hb", col='"red"')
print >> out, mk_call_str("lines", "s.values", "hc", col='"green"')
print >> out, mk_call_str("lines", "s.values", "hd", col='"blue"')
script = out.getvalue().rstrip()
# create the R plot image
device_name = Form.g_imageformat_to_r_function[fs.imageformat]
retcode, r_out, r_err, image_data = RUtil.run_plotter_no_table(script, device_name)
if retcode:
raise RUtil.RError(r_err)
return image_data
示例5: get_response_content
# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter_no_table [as 别名]
def get_response_content(fs):
# define the initial frequency
p = 0.1
# define some selection coefficients to plot
low = -20
high = 20
s_values = np.linspace(low, high, (high-low)*10 + 1)
# define some dominance coefficients
h_values = [-3, 0, 1, 2]
# get the values for each h
arr = []
for h in h_values:
v = [kimura.get_fixation_probability_chen(p, s, h) for s in s_values]
arr.append(v)
#
# define the r script
out = StringIO()
print >> out, 's.values <- c', str(tuple(s_values))
print >> out, 'ha <- c', str(tuple(arr[0]))
print >> out, 'hb <- c', str(tuple(arr[1]))
print >> out, 'hc <- c', str(tuple(arr[2]))
print >> out, 'hd <- c', str(tuple(arr[3]))
print >> out, mk_call_str('plot', 's.values', 'ha',
type='"l"',
xlab='"selection coefficient (s)"',
ylab='"probability of eventual fixation"',
main='"fixation probabilities for various h ; p0 = 0.1"',
ylim='c(0,1)',
)
print >> out, mk_call_str('lines', 's.values', 'hb', col='"red"')
print >> out, mk_call_str('lines', 's.values', 'hc', col='"green"')
print >> out, mk_call_str('lines', 's.values', 'hd', col='"blue"')
script = out.getvalue().rstrip()
# create the R plot image
device_name = Form.g_imageformat_to_r_function[fs.imageformat]
retcode, r_out, r_err, image_data = RUtil.run_plotter_no_table(
script, device_name)
if retcode:
raise RUtil.RError(r_err)
return image_data
示例6: get_response_content
# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter_no_table [as 别名]
def get_response_content(fs):
# define some fixed values
N_diploid = 8
N_hap = 2 * N_diploid
plot_density = 8
# get the user-defined theta
if fs.theta_1em0:
theta = 1.0
elif fs.theta_1em1:
theta = 0.1
elif fs.theta_1em2:
theta = 0.01
# define some mutation rates
Nr_values = [0.0, 5.0]
# define some selection coefficients to plot
Ns_low = 0.0
Ns_high = 2.5
Ns_values = np.linspace(Ns_low, Ns_high, 3*plot_density + 1)
# get the values for each h
arr = get_plot_array(N_diploid, theta, Nr_values, Ns_values)
#ylab='"log(Type1 / Type2)"'
ylab='"normalized time (Type1 - Type2)"'
# define x and y plot limits
xlim = (Ns_low, Ns_high)
ylim = (np.min(arr), np.max(arr))
ylogstr = '""'
out = StringIO()
print >> out, get_plot(
N_hap, theta, arr, Nr_values, Ns_values,
xlim, ylim, ylogstr, ylab)
script = out.getvalue().rstrip()
# create the R plot image
device_name = Form.g_imageformat_to_r_function[fs.imageformat]
retcode, r_out, r_err, image_data = RUtil.run_plotter_no_table(
script, device_name)
if retcode:
raise RUtil.RError(r_err)
return image_data
示例7: get_response_content
# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter_no_table [as 别名]
#.........这里部分代码省略.........
v = MatrixUtil.get_stationary_distribution(P)
for state_index, counts in enumerate(kaizeng.gen_states(
N_big_haploid, k)):
if counts[0] and counts[1]:
allele_histograms[i, counts[0]] += v[state_index]
# Define the r table.
# There are nine columns each corresponding to an allele frequency.
# There are three rows each corresponding to a configuration.
arr = []
# Use the two allele approximation
# from mcvean and charlesworth 1999 referred to by zeng 2011.
# I'm not sure if I am using the right equation.
g0 = fs.gamma_0
g1 = fs.gamma_1
"""
s_0 = -gamma_0 / float(N_big)
s_1 = -gamma_1 / float(N_big)
hist = np.zeros(N_small+1)
for i in range(1, N_small):
x = i / float(N_small)
hist[i] = math.exp(1*N_big*(s_0 - s_1)*x) / (x*(1-x))
h = hist[1:-1]
h /= np.sum(h)
arr.append(h.tolist())
"""
arr.append(diallelic_approximation(N_small, g0, g1).tolist())
# Use the exact two allele distribution.
# Well, it is exact if I understand the right scaling
# of the population size and fitnesses.
f0 = 1.0
f1 = 1.0 - gamma / N_big_haploid
#f0 = 1.0 + gamma / N
#f1 = 1.0
#f0 = 1.0 + 1.5 / (4*N)
#f1 = 1.0 - 1.5 / (4*N)
h = get_two_allele_distribution(
N_big_haploid, N_small, f0, f1, f_subsample)
arr.append(h.tolist())
# Get frequencies for the other two configurations
for hist in allele_histograms:
# Get probabilities conditional on dimorphism.
hist[0] = 0
hist[-1] = 0
hist /= np.sum(hist)
# Get the subsampled pmf.
distn = f_subsample(hist, N_small)
MatrixUtil.assert_distribution(distn)
# Get probabiities conditional on dimorphism of the sample.
distn[0] = 0
distn[-1] = 0
distn /= np.sum(distn)
# Add to the table of densities.
arr.append(distn[1:-1].tolist())
# Get a large population approximation
# when there is mutational bias.
params = (0.008, 2, 1, fs.gamma_0, fs.gamma_1, fs.gamma_2)
mutation, fitness = kaizeng.params_to_mutation_fitness(
N_big_haploid, params)
gammas = np.array([fs.gamma_0, fs.gamma_1, fs.gamma_2, 0])
h = kaizeng.get_large_population_approximation(N_small, k, gammas, mutation)
arr.append(h.tolist())
# define the r script
out = StringIO()
print >> out, 'title.string <- "allele 1 vs allele 2"'
print >> out, 'mdat <-', RUtil.matrix_to_R_string(arr)
print >> out, mk_call_str(
'barplot',
'mdat',
'legend.text=' + mk_call_str(
'c',
'"two-allele large N limit"',
'"two-allele"',
'"four-allele without mutational bias"',
'"four-allele with mutational bias (kappa_{1,2}=2)"',
'"four-allele with mutational bias, large N limit"',
),
'args.legend = list(x="topleft", bty="n")',
'names.arg = c(1,2,3,4,5,6,7,8,9)',
main='title.string',
xlab='"frequency of allele 1"',
ylab='"frequency"',
col=mk_call_str(
'c',
'"red"',
'"white"',
'"black"',
'"gray"',
'"blue"',
),
beside='TRUE',
)
#print >> out, 'box()'
script = out.getvalue().rstrip()
# create the R plot image
device_name = Form.g_imageformat_to_r_function[fs.imageformat]
retcode, r_out, r_err, image_data = RUtil.run_plotter_no_table(
script, device_name)
if retcode:
raise RUtil.RError(r_err)
return image_data
示例8: get_response_content
# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter_no_table [as 别名]
def get_response_content(fs):
# define the initial frequency
p = 0.1
# define some selection coefficients to plot
h_low = 0.2
h_high = 0.8
h_values = np.linspace(h_low, h_high, 6*10 + 1)
# define some dominance coefficients
hs_values = [-0.2, -0.1, -0.04, 0, 0.04, 0.1, 0.2]
#colors = ['blue', 'green', 'black', 'orange', 'red']
colors = ['darkviolet', 'blue', 'green', 'black', 'yellow', 'orange', 'red']
# get the values for each h
arr = []
xaxis = []
for hs in hs_values:
s_values = hs / h_values
v = [kimura.get_fixation_probability_chen(p, hs/h, h) for h in h_values]
xaxis.append(s_values)
arr.append(v)
#
# define the r script
out = StringIO()
print >> out, 'h.values <- c', str(tuple(h_values))
print >> out, 'ha <- c', str(tuple(arr[0]))
print >> out, 'hb <- c', str(tuple(arr[1]))
print >> out, 'hc <- c', str(tuple(arr[2]))
print >> out, 'hd <- c', str(tuple(arr[3]))
print >> out, 'he <- c', str(tuple(arr[4]))
print >> out, 'hf <- c', str(tuple(arr[5]))
print >> out, 'hg <- c', str(tuple(arr[6]))
print >> out, 'ha.x <- c', str(tuple(xaxis[0]))
print >> out, 'hb.x <- c', str(tuple(xaxis[1]))
print >> out, 'hc.x <- c', str(tuple(xaxis[2]))
print >> out, 'hd.x <- c', str(tuple(xaxis[3]))
print >> out, 'he.x <- c', str(tuple(xaxis[4]))
print >> out, 'hf.x <- c', str(tuple(xaxis[5]))
print >> out, 'hg.x <- c', str(tuple(xaxis[6]))
print >> out, mk_call_str('plot', 'ha.x', 'ha',
type='"l"',
xlab='"selection coefficient (s)"',
ylab='"probability of eventual fixation"',
main=(
'"fixation probabilities for various h*s ; '
's = 2*N*sigma ; p0 = %s"' % p),
xlim='c(-1, 1)',
ylim='c(0.05, 0.15)',
col='"%s"' % colors[0],
)
print >> out, mk_call_str('lines', 'hb.x', 'hb', col='"%s"' % colors[1])
print >> out, mk_call_str('lines', 'hc.x', 'hc', col='"%s"' % colors[2])
print >> out, mk_call_str('lines', 'hd.x', 'hd', col='"%s"' % colors[3])
print >> out, mk_call_str('lines', 'he.x', 'he', col='"%s"' % colors[4])
print >> out, mk_call_str('lines', 'hf.x', 'hf', col='"%s"' % colors[5])
print >> out, mk_call_str('lines', 'hg.x', 'hg', col='"%s"' % colors[6])
print >> out, mk_call_str(
'legend',
'"topleft"',
'c' + str(rev('hs = %s' % x for x in hs_values)),
lty='c' + str(rev([1]*7)),
lwd='c' + str(rev([2.5]*7)),
col='c' + str(rev(colors)),
)
script = out.getvalue().rstrip()
# create the R plot image
device_name = Form.g_imageformat_to_r_function[fs.imageformat]
retcode, r_out, r_err, image_data = RUtil.run_plotter_no_table(
script, device_name)
if retcode:
raise RUtil.RError(r_err)
return image_data
示例9: get_response_content
# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter_no_table [as 别名]
def get_response_content(fs):
N_diploid = 10
N_mutants = 1
N_haploid = N_diploid * 2
p = N_mutants / float(N_haploid)
t1_exact = []
t1_approx = []
Nes_values = range(1, 9)
for Nes in Nes_values:
s = Nes / float(N_diploid)
t1_exact.append(get_t1_exact(N_mutants, N_diploid, s))
t1_approx.append(get_t1_approx(p, N_diploid, s))
# define the r script
out = StringIO()
print >> out, 'title.string <- "my title"'
print >> out, 'Nes <- c', str(tuple(Nes_values))
print >> out, 't1 <- c', str(tuple(t1_exact))
print >> out, 't1.approx <- c', str(tuple(t1_approx))
print >> out, mk_call_str('plot', 'Nes', 't1',
#col='"red"', type='"l"', xaxp='c(0,1,10)',
ylim='c(0,%s)' % (N_diploid*4))
print >> out, mk_call_str('lines', 'Nes', 't1.approx', col='"red"')
#print >> out, mk_call_str('points', 'p.20', 't1.20.exact',
#col='"blue"')
#
"""
print >> out, 't1.10.approx <- c', str(tuple(t1_10_approx))
print >> out, 't1.10.exact <- c', str(tuple(t1_10_exact))
print >> out, 'p.10 <- c', str(tuple(proportions_10.tolist()))
print >> out, mk_call_str('lines', 'p.10', 't1.10.approx',
col='"red"')
print >> out, mk_call_str('points', 'p.10', 't1.10.exact',
col='"blue"')
"""
#
"""
'barplot',
'mdat',
'legend.text=' + mk_call_str(
'c',
'"exact discrete distribution"',
'"continuous approximation"',
#'"two-allele large N limit"',
#'"two-allele"',
#'"four-allele without mutational bias"',
#'"four-allele with mutational bias (kappa_{1,2}=2)"',
#'"four-allele with mutational bias, large N limit"',
),
'args.legend = list(x="topright", bty="n")',
'names.arg = 1:%s' % (N-1),
main='title.string',
xlab='"frequency of allele 1"',
ylab='"frequency"',
col=mk_call_str(
'c',
#'"red"',
#'"white"',
'"black"',
#'"gray"',
'"red"',
),
beside='TRUE',
border='NA',
)
#print >> out, 'box()'
"""
script = out.getvalue().rstrip()
# create the R plot image
device_name = Form.g_imageformat_to_r_function[fs.imageformat]
retcode, r_out, r_err, image_data = RUtil.run_plotter_no_table(
script, device_name)
if retcode:
raise RUtil.RError(r_err)
return image_data
示例10: get_response_content
# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter_no_table [as 别名]
def get_response_content(fs):
N_diploid = fs.N_diploid
N = N_diploid * 2
k = 2
gamma = fs.gamma
# define the fitnesses and the selection value
f0 = 1.0
f1 = 1.0 - gamma / N
s = 1 - f1 / f0
if f1 <= 0:
raise ValueError('the extreme selection caused a non-positive fitness')
# get a wright fisher transition matrix
P = np.exp(wfengine.create_genic_diallelic(N_diploid, s))
"""
# condition on no fixation
for i in range(N):
P[i] /= 1 - P[i, N]
# remove the fixed state from the transition matrix
P = P[:N, :N]
"""
# add mutations
P[0, 0] = 0
P[0, 1] = 1
P[N, N] = 0
P[N, 1] = 1
# compute the stationary distribution
v = MatrixUtil.get_stationary_distribution(P)
# get the distribution over dimorphic states
h = v[1:-1]
h /= np.sum(h)
# look at continuous approximations
w = np.zeros(N+1)
for i in range(1, N):
x = i / float(N)
#x0 = i / float(N)
#x1 = (i + 1) / float(N)
#value = sojourn_definite(x0, x1, gamma)
value = sojourn_kernel(x, gamma)
w[i] = value
w = w[1:-1]
w /= np.sum(w)
# get the array for the R plot
arr = [h.tolist(), w.tolist()]
# define the r script
out = StringIO()
print >> out, 'title.string <- "allele 1 vs allele 2"'
print >> out, 'mdat <-', RUtil.matrix_to_R_string(arr)
print >> out, mk_call_str(
'barplot',
'mdat',
'legend.text=' + mk_call_str(
'c',
'"exact discrete distribution"',
'"continuous approximation"',
#'"two-allele large N limit"',
#'"two-allele"',
#'"four-allele without mutational bias"',
#'"four-allele with mutational bias (kappa_{1,2}=2)"',
#'"four-allele with mutational bias, large N limit"',
),
'args.legend = list(x="topright", bty="n")',
'names.arg = 1:%s' % (N-1),
main='title.string',
xlab='"frequency of allele 1"',
ylab='"frequency"',
col=mk_call_str(
'c',
#'"red"',
#'"white"',
'"black"',
#'"gray"',
'"red"',
),
beside='TRUE',
border='NA',
)
#print >> out, 'box()'
script = out.getvalue().rstrip()
# create the R plot image
device_name = Form.g_imageformat_to_r_function[fs.imageformat]
retcode, r_out, r_err, image_data = RUtil.run_plotter_no_table(
script, device_name)
if retcode:
raise RUtil.RError(r_err)
return image_data
示例11: get_response_content
# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter_no_table [as 别名]
def get_response_content(fs):
N_diploid = 5
N_haploid = N_diploid * 2
k = 4
gamma = 1.5
params_list = [
(0.008, 1, 1, 0, gamma, 1),
(0.008, 2, 1, 0, gamma, 1)]
allele_histograms = np.zeros((2, N_haploid+1))
for i, params in enumerate(params_list):
mutation, fitnesses = kaizeng.params_to_mutation_fitness(
N_haploid, params)
P = kaizeng.get_transition_matrix(
N_diploid, k, mutation, fitnesses)
v = MatrixUtil.get_stationary_distribution(P)
for state_index, counts in enumerate(kaizeng.gen_states(N_haploid, k)):
if counts[0] and counts[1]:
allele_histograms[i, counts[0]] += v[state_index]
# Define the r table.
# There are nine columns each corresponding to an allele frequency.
# There are three rows each corresponding to a configuration.
arr = []
# Use the exact two allele distribution.
# Well, it is exact if I understand the right scaling
# of the population size and fitnesses.
f0 = 1.0
f1 = 1.0 - gamma / N_haploid
#f0 = 1.0 + gamma / N
#f1 = 1.0
#f0 = 1.0 + 1.5 / (4*N)
#f1 = 1.0 - 1.5 / (4*N)
h = get_two_allele_distribution(N_diploid, f0, f1)
arr.append(h.tolist())
# Use the two allele approximation
# from mcvean and charlesworth 1999 referred to by zeng 2011.
# I'm not sure if I am using the right equation.
"""
gamma_0 = 0
gamma_1 = 1.5
s_0 = -gamma_0 / float(N)
s_1 = -gamma_1 / float(N)
hist = np.zeros(N+1)
for i in range(1, N):
x = i / float(N)
hist[i] = math.exp(1*N*(s_0 - s_1)*x) / (x*(1-x))
h = hist[1:-1]
h /= np.sum(h)
arr.append(h.tolist())
"""
# Get frequencies for the other two configurations
for hist in allele_histograms:
h = hist[1:-1]
h /= np.sum(h)
arr.append(h.tolist())
# define the r script
out = StringIO()
print >> out, 'title.string <- "allele 1 vs allele 2, gamma = 1.5"'
print >> out, 'mdat <-', RUtil.matrix_to_R_string(arr)
print >> out, mk_call_str(
'barplot',
'mdat',
'legend.text=' + mk_call_str(
'c',
'"two-allele"',
'"four-allele without mutational bias"',
'"four-allele with mutational bias kappa_{1,2}=2"',
),
'args.legend = list(x="topleft", bty="n")',
'names.arg = c(1,2,3,4,5,6,7,8,9)',
main='title.string',
xlab='"frequency of allele 1"',
ylab='"frequency"',
col=mk_call_str(
'c',
#'"red"',
'"white"',
'"black"',
'"gray"',
),
beside='TRUE',
)
#print >> out, 'box()'
script = out.getvalue().rstrip()
# create the R plot image
device_name = Form.g_imageformat_to_r_function[fs.imageformat]
retcode, r_out, r_err, image_data = RUtil.run_plotter_no_table(
script, device_name)
if retcode:
raise RUtil.RError(r_err)
return image_data