当前位置: 首页>>代码示例>>Python>>正文


Python RUtil.run_plotter方法代码示例

本文整理汇总了Python中RUtil.run_plotter方法的典型用法代码示例。如果您正苦于以下问题:Python RUtil.run_plotter方法的具体用法?Python RUtil.run_plotter怎么用?Python RUtil.run_plotter使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在RUtil的用法示例。


在下文中一共展示了RUtil.run_plotter方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def main(args):
    # get the end positions,
    # forcing the first end position to be 5
    # and the last end position to be 898.
    incr = (g_nchar - 5) / float(args.nlengths - 1)
    stop_positions = [5 + int(i * incr) for i in range(args.nlengths)]
    stop_positions[-1] = g_nchar
    # run BEAST and create the R stuff
    table_string, scripts = get_table_string_and_scripts(
            stop_positions, args.nsamples)
    # create the comboscript
    out = StringIO()
    print >> out, 'library(ggplot2)'
    print >> out, 'par(mfrow=c(3,1))'
    for script in scripts:
        print >> out, script
    comboscript = out.getvalue()
    # create the R output image
    device_name = Form.g_imageformat_to_r_function['pdf']
    retcode, r_out, r_err, image_data = RUtil.run_plotter( 
        table_string, comboscript, device_name) 
    if retcode: 
        raise RUtil.RError(r_err) 
    # write the image data
    with open(args.outfile, 'wb') as fout:
        fout.write(image_data)
开发者ID:argriffing,项目名称:xgcode,代码行数:28,代码来源:20120405a.py

示例2: get_response_content

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def get_response_content(fs):
    f_info = ctmcmi.get_mutual_info_known_distn
    # define the R table headers
    headers = ['log.probability.ratio', 'mutual.information']
    # make the array
    arr = []
    for x in np.linspace(fs.x_min, fs.x_max, 101):
        row = [x]
        proc = evozoo.AlternatingHypercube_d_1(3)
        X = np.array([x])
        distn = proc.get_distn(X)
        Q = proc.get_rate_matrix(X)
        info = f_info(Q, distn, fs.t)
        row.append(info)
        arr.append(row)
    # create the R table string and scripts
    # get the R table
    table_string = RUtil.get_table_string(arr, headers)
    # get the R script
    script = get_ggplot()
    # create the R plot image
    device_name = Form.g_imageformat_to_r_function[fs.imageformat]
    retcode, r_out, r_err, image_data = RUtil.run_plotter(
            table_string, script, device_name)
    if retcode:
        raise RUtil.RError(r_err)
    return image_data
开发者ID:argriffing,项目名称:xgcode,代码行数:29,代码来源:20120531d.py

示例3: get_response_content

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def get_response_content(fs):
    M, R = get_input_matrices(fs)
    # create the R table string and scripts
    headers = [
            't',
            'mi.true.mut',
            'mi.true.mutsel',
            'mi.analog.mut',
            'mi.analog.mutsel']
    npoints = 100
    t_low = 0.0
    t_high = 5.0
    t_incr = (t_high - t_low) / (npoints - 1)
    t_values = [t_low + t_incr*i for i in range(npoints)]
    # get the data for the R table
    arr = []
    for t in t_values:
        mi_mut = ctmcmi.get_mutual_information(M, t)
        mi_mutsel = ctmcmi.get_mutual_information(R, t)
        mi_analog_mut = ctmcmi.get_ll_ratio_wrong(M, t)
        mi_analog_mutsel = ctmcmi.get_ll_ratio_wrong(R, t)
        row = [t, mi_mut, mi_mutsel, mi_analog_mut, mi_analog_mutsel]
        arr.append(row)
    # get the R table
    table_string = RUtil.get_table_string(arr, headers)
    # get the R script
    script = get_ggplot()
    # create the R plot image
    device_name = Form.g_imageformat_to_r_function[fs.imageformat]
    retcode, r_out, r_err, image_data = RUtil.run_plotter(
            table_string, script, device_name)
    if retcode:
        raise RUtil.RError(r_err)
    return image_data
开发者ID:argriffing,项目名称:xgcode,代码行数:36,代码来源:20120423b.py

示例4: get_response_content

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def get_response_content(fs):
    # validate and store user input
    if fs.x_max <= fs.x_min:
        raise ValueError('check the min and max logs')
    f_info = divtime.get_fisher_info_known_distn_fast
    # define the R table headers
    headers = ['log.probability.ratio', 'fisher.information']
    # make the array
    arr = []
    for x in np.linspace(fs.x_min, fs.x_max, 101):
        row = [x]
        proc = evozoo.DistinguishedCornerPairHypercube_d_1(3)
        X = np.array([x])
        distn = proc.get_distn(X)
        Q = proc.get_rate_matrix(X)
        info = f_info(Q, distn, fs.t)
        row.append(info)
        arr.append(row)
    # create the R table string and scripts
    # get the R table
    table_string = RUtil.get_table_string(arr, headers)
    # get the R script
    script = get_ggplot()
    # create the R plot image
    device_name = Form.g_imageformat_to_r_function[fs.imageformat]
    retcode, r_out, r_err, image_data = RUtil.run_plotter(
            table_string, script, device_name)
    if retcode:
        raise RUtil.RError(r_err)
    return image_data
开发者ID:argriffing,项目名称:xgcode,代码行数:32,代码来源:20120604a.py

示例5: get_response_content

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def get_response_content(fs):
    # precompute some transition matrices
    P_drift_selection = pgmsinglesite.create_drift_selection_transition_matrix(
            fs.npop, fs.selection_ratio)
    MatrixUtil.assert_transition_matrix(P_drift_selection)
    P_mutation = pgmsinglesite.create_mutation_transition_matrix(
            fs.npop, fs.mutation_ab, fs.mutation_ba)
    MatrixUtil.assert_transition_matrix(P_mutation)
    # define the R table headers
    headers = ['generation', 'number.of.mutants']
    # compute the path samples
    P = np.dot(P_drift_selection, P_mutation)
    mypath = PathSampler.sample_endpoint_conditioned_path(
            fs.nmutants_initial, fs.nmutants_final, fs.ngenerations, P)
    arr = [[i, nmutants] for i, nmutants in enumerate(mypath)]
    # create the R table string and scripts
    # get the R table
    table_string = RUtil.get_table_string(arr, headers)
    # get the R script
    script = get_ggplot()
    # create the R plot image
    device_name = Form.g_imageformat_to_r_function[fs.imageformat]
    retcode, r_out, r_err, image_data = RUtil.run_plotter(
            table_string, script, device_name)
    if retcode:
        raise RUtil.RError(r_err)
    return image_data
开发者ID:argriffing,项目名称:xgcode,代码行数:29,代码来源:20120711a.py

示例6: main

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def main(args):
    # set up the logger
    f = logging.getLogger('toplevel.logger')
    h = logging.StreamHandler()
    h.setFormatter(logging.Formatter('%(message)s %(asctime)s'))
    f.addHandler(h)
    if args.verbose:
        f.setLevel(logging.DEBUG)
    else:
        f.setLevel(logging.WARNING)
    f.info('(local) permute columns of the alignment')
    header_seq_pairs = beasttut.get_456_col_permuted_header_seq_pairs()
    f.info('(local) run BEAST serially locally and build the R stuff')
    table_string, scripts = get_table_string_and_scripts(
            g_start_stop_pairs, args.nsamples, header_seq_pairs)
    f.info('(local) create the composite R script')
    out = StringIO()
    print >> out, 'library(ggplot2)'
    print >> out, 'par(mfrow=c(3,1))'
    for script in scripts:
        print >> out, script
    comboscript = out.getvalue()
    f.info('(local) run R to create the pdf')
    device_name = Form.g_imageformat_to_r_function['pdf']
    retcode, r_out, r_err, image_data = RUtil.run_plotter( 
        table_string, comboscript, device_name, keep_intermediate=True) 
    if retcode: 
        raise RUtil.RError(r_err) 
    f.info('(local) write the .pdf file')
    with open(args.outfile, 'wb') as fout:
        fout.write(image_data)
    f.info('(local) return from toplevel')
开发者ID:argriffing,项目名称:xgcode,代码行数:34,代码来源:20120419b.py

示例7: get_response_content

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def get_response_content(fs):
    # legend labels
    label_a = 'N=%d mu=%f' % (fs.nstates_a, fs.mu_a)
    label_b = 'N=%d mu=%f' % (fs.nstates_b, fs.mu_b)
    arr, headers = make_table(fs)
    # compute the max value
    ymax = math.log(max(fs.nstates_a, fs.nstates_b))
    nfifths = int(math.floor(ymax * 5.0)) + 1
    ylim = RUtil.mk_call_str('c', 0, 0.2 * nfifths)
    # write the R script body
    out = StringIO()
    print >> out, RUtil.mk_call_str(
            'plot',
            'my.table$t',
            'my.table$alpha',
            type='"n"',
            ylim=ylim,
            xlab='"time"',
            ylab='"information"',
            main='"comparison of an information criterion for two processes"',
            )
    # draw some horizontal lines
    for i in range(nfifths+1):
        print >> out, RUtil.mk_call_str(
                'abline',
                h=0.2*i,
                col='"lightgray"',
                lty='"dotted"')
    colors = ('darkblue', 'darkred')
    for c, header in zip(colors, headers[1:]):
        print >> out, RUtil.mk_call_str(
                'lines',
                'my.table$t',
                'my.table$%s' % header,
                col='"%s"' % c,
                )
    legend_names = (label_a, label_b)
    legend_name_str = 'c(' + ', '.join('"%s"' % s for s in legend_names) + ')'
    legend_col_str = 'c(' + ', '.join('"%s"' % s for s in colors) + ')'
    legend_lty_str = 'c(' + ', '.join('1' for s in colors) + ')'
    print >> out, RUtil.mk_call_str(
            'legend',
            '"%s"' % fs.legend_placement,
            legend_name_str,
            col=legend_col_str,
            lty=legend_lty_str,
            )
    script_body = out.getvalue()
    # create the R plot image
    table_string = RUtil.get_table_string(arr, headers)
    device_name = Form.g_imageformat_to_r_function[fs.imageformat]
    retcode, r_out, r_err, image_data = RUtil.run_plotter(
            table_string, script_body, device_name)
    if retcode:
        raise RUtil.RError(r_err)
    return image_data
开发者ID:argriffing,项目名称:xgcode,代码行数:58,代码来源:20120518a.py

示例8: get_response_content

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def get_response_content(fs):
    # precompute some transition matrices
    P_drift_selection = pgmsinglesite.create_drift_selection_transition_matrix(
            fs.npop, fs.selection_ratio)
    MatrixUtil.assert_transition_matrix(P_drift_selection)
    P_mutation = pgmsinglesite.create_mutation_transition_matrix(
            fs.npop, fs.mutation_ab, fs.mutation_ba)
    MatrixUtil.assert_transition_matrix(P_mutation)
    # define the R table headers
    headers = [
            'generation',
            'number.of.mutants',
            'probability',
            'log.prob',
            ]
    # compute the transition matrix
    P = np.dot(P_drift_selection, P_mutation)
    # Compute the endpoint conditional probabilities for various states
    # along the unobserved path.
    nstates = fs.npop + 1
    M = np.zeros((nstates, fs.ngenerations))
    M[fs.nmutants_initial, 0] = 1.0
    M[fs.nmutants_final, fs.ngenerations-1] = 1.0
    for i in range(fs.ngenerations-2):
        A_exponent = i + 1
        B_exponent = fs.ngenerations - 1 - A_exponent
        A = np.linalg.matrix_power(P, A_exponent)
        B = np.linalg.matrix_power(P, B_exponent)
        weights = np.zeros(nstates)
        for k in range(nstates):
            weights[k] = A[fs.nmutants_initial, k] * B[k, fs.nmutants_final]
        weights /= np.sum(weights)
        for k, p in enumerate(weights):
            M[k, i+1] = p
    arr = []
    for g in range(fs.ngenerations):
        for k in range(nstates):
            p = M[k, g]
            if p:
                logp = math.log(p)
            else:
                logp = float('-inf')
            row = [g, k, p, logp]
            arr.append(row)
    # create the R table string and scripts
    # get the R table
    table_string = RUtil.get_table_string(arr, headers)
    # get the R script
    script = get_ggplot()
    # create the R plot image
    device_name = Form.g_imageformat_to_r_function[fs.imageformat]
    retcode, r_out, r_err, image_data = RUtil.run_plotter(
            table_string, script, device_name)
    if retcode:
        raise RUtil.RError(r_err)
    return image_data
开发者ID:argriffing,项目名称:xgcode,代码行数:58,代码来源:20120711b.py

示例9: get_response_content

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def get_response_content(fs):
    f_info = divtime.get_fisher_info_known_distn_fast
    requested_triples = []
    for triple in g_process_triples:
        name, desc, zoo_obj = triple
        if getattr(fs, name):
            requested_triples.append(triple)
    if not requested_triples:
        raise ValueError('nothing to plot')
    # define the R table headers
    r_names = [a.replace('_', '.') for a, b, c in requested_triples]
    headers = ['t'] + r_names
    # Spend a lot of time doing the optimizations
    # to construct the points for the R table.
    arr = []
    for t in cbreaker.throttled(
            progrid.gen_binary(fs.start_time, fs.stop_time),
            nseconds=5, ncount=200):
        row = [t]
        for python_name, desc, zoo_class in requested_triples:
            zoo_obj = zoo_class(fs.d)
            df = zoo_obj.get_df()
            opt_dep = OptDep(zoo_obj, t, f_info)
            if df:
                X0 = np.random.randn(df)
                xopt = scipy.optimize.fmin(
                        opt_dep, X0, maxiter=10000, maxfun=10000)
                # I would like to use scipy.optimize.minimize
                # except that this requires a newer version of
                # scipy than is packaged for ubuntu right now.
                # fmin_bfgs seems to have problems sometimes
                # either hanging or maxiter=10K is too big.
                """
                xopt = scipy.optimize.fmin_bfgs(opt_dep, X0,
                        gtol=1e-8, maxiter=10000)
                """
            else:
                xopt = np.array([])
            info_value = -opt_dep(xopt)
            row.append(info_value)
        arr.append(row)
    arr.sort()
    npoints = len(arr)
    # create the R table string and scripts
    # get the R table
    table_string = RUtil.get_table_string(arr, headers)
    # get the R script
    script = get_ggplot()
    # create the R plot image
    device_name = Form.g_imageformat_to_r_function[fs.imageformat]
    retcode, r_out, r_err, image_data = RUtil.run_plotter(
            table_string, script, device_name)
    if retcode:
        raise RUtil.RError(r_err)
    return image_data
开发者ID:argriffing,项目名称:xgcode,代码行数:57,代码来源:20120531a.py

示例10: get_response_content

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def get_response_content(fs):
    distn_modes = [x for x in g_ordered_modes if x in fs.distribution]
    if not distn_modes:
        raise ValueError('no distribution mode was specified')
    colors = [g_mode_to_color[m] for m in distn_modes]
    arr, headers = make_table(fs, distn_modes)
    distn_headers = headers[1:]
    # Get the largest value in the array,
    # skipping the first column.
    arrmax = np.max(arr[:,1:])
    # write the R script body
    out = StringIO()
    ylim = RUtil.mk_call_str('c', 0, arrmax + 0.1)
    sel_str = {
            BALANCED : 'balanced',
            HALPERN_BRUNO : 'Halpern-Bruno',
            }[fs.selection]
    print >> out, RUtil.mk_call_str(
            'plot',
            'my.table$t',
            'my.table$%s' % distn_headers[0],
            type='"n"',
            ylim=ylim,
            xlab='""',
            ylab='"relaxation time"',
            main='"Effect of selection (%s) on relaxation time for %d states"' % (sel_str, fs.nstates),
            )
    for c, header in zip(colors, distn_headers):
        print >> out, RUtil.mk_call_str(
                'lines',
                'my.table$t',
                'my.table$%s' % header,
                col='"%s"' % c,
                )
    mode_names = [s.replace('_', ' ') for s in distn_modes]
    legend_name_str = 'c(' + ', '.join('"%s"' % s for s in mode_names) + ')'
    legend_col_str = 'c(' + ', '.join('"%s"' % s for s in colors) + ')'
    legend_lty_str = 'c(' + ', '.join(['1']*len(distn_modes)) + ')'
    print >> out, RUtil.mk_call_str(
            'legend',
            '"%s"' % fs.legend_placement,
            legend_name_str,
            col=legend_col_str,
            lty=legend_lty_str,
            )
    script_body = out.getvalue()
    # create the R plot image
    table_string = RUtil.get_table_string(arr, headers)
    device_name = Form.g_imageformat_to_r_function[fs.imageformat]
    retcode, r_out, r_err, image_data = RUtil.run_plotter(
            table_string, script_body, device_name)
    if retcode:
        raise RUtil.RError(r_err)
    return image_data
开发者ID:argriffing,项目名称:xgcode,代码行数:56,代码来源:20111128b.py

示例11: get_latex_documentbody

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def get_latex_documentbody(fs):
    """
    This is obsolete.
    """
    out = StringIO()
    table_string, scripts = get_table_string_and_scripts(fs)
    for script in scripts:
        retcode, r_out, r_err, tikz_code = RUtil.run_plotter(table_string, script, "tikz", width=5, height=5)
        if retcode:
            raise RUtil.RError(r_err)
        print >> out, tikz_code
    return out.getvalue()
开发者ID:argriffing,项目名称:xgcode,代码行数:14,代码来源:20120122a.py

示例12: main

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def main(args):
    # check args
    if gmpy.popcount(args.ntiles) != 1:
        raise ValueError('the number of tiles should be a power of two')
    # set up the logger
    f = logging.getLogger('toplevel.logger')
    h = logging.StreamHandler()
    h.setFormatter(logging.Formatter('%(message)s %(asctime)s'))
    f.addHandler(h)
    if args.verbose:
        f.setLevel(logging.DEBUG)
    else:
        f.setLevel(logging.WARNING)
    f.info('(local) read the xml contents')
    if args.infile is None:
        xmldata = sys.stdin.read()
    else:
        with open(args.infile) as fin:
            xmldata = fin.read()
    f.info('(local) modify the log filename and chain length xml contents')
    xmldata = beast.set_nsamples(xmldata, args.mcmc_id, args.nsamples)
    xmldata = beast.set_log_filename(xmldata, args.log_id, args.log_filename)
    xmldata = beast.set_log_logevery(xmldata, args.log_id, args.log_logevery)
    f.info('(local) define the hierarchically nested intervals')
    start_stop_pairs = tuple(
            (a+1,b) for a, b in beasttiling.gen_hierarchical_slices(
                args.tile_width, args.offset, args.tile_width * args.ntiles))
    f.info('(local) run BEAST serially locally and build the R stuff')
    table_string, full_table_string, scripts = get_table_strings_and_scripts(
            xmldata, args.alignment_id, start_stop_pairs, args.nsamples)
    if args.full_table_out:
        f.info('(local) create the verbose R table')
        with open(args.full_table_out, 'w') as fout:
            fout.write(full_table_string)
    f.info('(local) create the composite R script')
    out = StringIO()
    print >> out, 'library(ggplot2)'
    print >> out, 'par(mfrow=c(3,1))'
    for script in scripts:
        print >> out, script
    comboscript = out.getvalue()
    f.info('(local) run R to create the pdf')
    device_name = Form.g_imageformat_to_r_function['pdf']
    retcode, r_out, r_err, image_data = RUtil.run_plotter( 
        table_string, comboscript, device_name, keep_intermediate=True) 
    if retcode: 
        raise RUtil.RError(r_err) 
    f.info('(local) write the .pdf file')
    with open(args.outfile, 'wb') as fout:
        fout.write(image_data)
    f.info('(local) return from toplevel')
开发者ID:argriffing,项目名称:xgcode,代码行数:53,代码来源:20120608a.py

示例13: get_response_content

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def get_response_content(fs):
    # get the table string and scripts
    table_string, scripts = get_table_string_and_scripts(fs)
    # create a comboscript
    out = StringIO()
    print >> out, "par(mfrow=c(3,1))"
    for script in scripts:
        print >> out, script
    comboscript = out.getvalue()
    # create the R plot image
    device_name = Form.g_imageformat_to_r_function[fs.imageformat]
    retcode, r_out, r_err, image_data = RUtil.run_plotter(table_string, comboscript, device_name)
    if retcode:
        raise RUtil.RError(r_err)
    return image_data
开发者ID:argriffing,项目名称:xgcode,代码行数:17,代码来源:20120122a.py

示例14: get_response_content

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def get_response_content(fs):
    f_info = ctmcmi.get_mutual_info_known_distn
    requested_triples = []
    for triple in g_process_triples:
        name, desc, zoo_obj = triple
        if getattr(fs, name):
            requested_triples.append(triple)
    if not requested_triples:
        raise ValueError('nothing to plot')
    # define the R table headers
    headers = ['t']
    if fs.log4:
        headers.append('log.4')
    if fs.log3:
        headers.append('log.3')
    r_names = [a.replace('_', '.') for a, b, c in requested_triples]
    headers.extend(r_names)
    # Spend a lot of time doing the optimizations
    # to construct the points for the R table.
    times = np.linspace(fs.start_time, fs.stop_time, 101)
    arr = []
    for t in times:
        row = [t]
        if fs.log4:
            row.append(math.log(4))
        if fs.log3:
            row.append(math.log(3))
        for python_name, desc, zoo_obj in requested_triples:
            X = np.array([])
            info_value = f_info(
                    zoo_obj.get_rate_matrix(X),
                    zoo_obj.get_distn(X),
                    t)
            row.append(info_value)
        arr.append(row)
    # create the R table string and scripts
    # get the R table
    table_string = RUtil.get_table_string(arr, headers)
    # get the R script
    script = get_ggplot()
    # create the R plot image
    device_name = Form.g_imageformat_to_r_function[fs.imageformat]
    retcode, r_out, r_err, image_data = RUtil.run_plotter(
            table_string, script, device_name)
    if retcode:
        raise RUtil.RError(r_err)
    return image_data
开发者ID:argriffing,项目名称:xgcode,代码行数:49,代码来源:20120531b.py

示例15: get_response_content

# 需要导入模块: import RUtil [as 别名]
# 或者: from RUtil import run_plotter [as 别名]
def get_response_content(fs):
    Q_mut, Q_sels = get_qmut_qsels(fs)
    # compute the statistics
    ER_ratios, NSR_ratios, ER_NSR_ratios  = get_statistic_ratios(Q_mut, Q_sels)
    M = zip(*(ER_ratios, NSR_ratios, ER_NSR_ratios))
    column_headers = ('ER.ratio', 'NSR.ratio', 'ER.times.NSR.ratio')
    table_string = RUtil.get_table_string(M, column_headers)
    nsels = len(Q_sels)
    # get the R script
    comboscript = get_r_comboscript(nsels, column_headers)
    # create the R plot image 
    device_name = Form.g_imageformat_to_r_function[fs.imageformat] 
    retcode, r_out, r_err, image_data = RUtil.run_plotter( 
        table_string, comboscript, device_name) 
    if retcode: 
        raise RUtil.RError(r_err) 
    return image_data 
开发者ID:argriffing,项目名称:xgcode,代码行数:19,代码来源:20120123a.py


注:本文中的RUtil.run_plotter方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。