当前位置: 首页>>代码示例>>Python>>正文


Python Network.train方法代码示例

本文整理汇总了Python中Network.train方法的典型用法代码示例。如果您正苦于以下问题:Python Network.train方法的具体用法?Python Network.train怎么用?Python Network.train使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Network的用法示例。


在下文中一共展示了Network.train方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Network

# 需要导入模块: import Network [as 别名]
# 或者: from Network import train [as 别名]
mnist = data.load("mnist", flatvecs = True)
test_data_xs = mnist["test"]["xs"]
train_data = mnist["train"]

net = Network(
    layers = [InputLayer([784]),
              FullyConnectedLayer([20], activation = sigmoid),
              FullyConnectedLayer([784], activation = sigmoid)],
    cost=mse)

for i in range(30):

    for m in range(150):
        batch_xs, _ = train_data.get_batch(30)
        net.train(batch_xs, batch_xs, learning_rate = 0.01 )

    print i, "Test Cost:", net.test(test_data_xs, test_data_xs )
    # Let's look at how it reproduces a few examples...
    examples = net(test_data_xs[0:3])
    examples = examples.reshape(-1, 28, 28)
    vis.vis_matrix(examples, s2x2 = True)
    print "----"

# Example Results:
#
# 0 Test Cost: 0.058131233367
#                             |                            |                            
#                             |                            |                            
#               ░░░░          |           ░░░░░░░░░        |            ░░░░░░░         
#           ░░░░░░░░░░░░      |        ░░░░▒▒▒▒▒▒░░░       |         ░░░░░▒▒░░░░░       
开发者ID:vyraun,项目名称:NN-Group-1-Code,代码行数:32,代码来源:ex05-Autoencder.py

示例2: Network

# 需要导入模块: import Network [as 别名]
# 或者: from Network import train [as 别名]

mnist = data.load("mnist")
test_data = mnist["test"].values()
train_data = mnist["train"]

net = Network(
    layers = [InputLayer([28,28]),
              ConvolutionLayer([6,6], 8, activation = ReLU),
              PoolLayer([2,2]),
              FullyConnectedLayer(100, activation = ReLU),
              SoftMaxLayer(10)],
    cost=log_likelihood)

for m in range(100):
    net.train(*train_data.get_batch(30), learning_rate = 0.01 )

xs, ys = train_data.get_batch(5)
info = net.introspect(xs, ys)
info.keys()


for i in range(20):
    for m in range(1000):
        net.train(*train_data.get_batch(30), learning_rate = 0.01 )

    print "Training Step", i
    print "Test Accuracy:", net.accuracy(*test_data)
    print "Test Cost:", net.test(*test_data)
    print ""
开发者ID:vyraun,项目名称:NN-Group-1-Code,代码行数:31,代码来源:ex06-ConvNet.py


注:本文中的Network.train方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。