本文整理汇总了Python中A.print_results方法的典型用法代码示例。如果您正苦于以下问题:Python A.print_results方法的具体用法?Python A.print_results怎么用?Python A.print_results使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类A
的用法示例。
在下文中一共展示了A.print_results方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run
# 需要导入模块: import A [as 别名]
# 或者: from A import print_results [as 别名]
def run(train, test, language, answer):
results = {}
total = len(train)
counter = 1
s = build_s(train, language)
#s = {}
# if language == 'English':
# tagger = set_tagger(language)
# else:
tagger = None
#tagger = set_tagger(language)
stemmer = set_stemmer(language)
for lexelt in train:
train_features, y_train = extract_features(train[lexelt], language, tagger, stemmer, s[lexelt])
test_features, _ = extract_features(test[lexelt], language, tagger, stemmer, s[lexelt])
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train, language)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
print str(counter) + ' out of ' + str(total) + ' completed'
counter += 1
A.print_results(results, answer)
示例2: run
# 需要导入模块: import A [as 别名]
# 或者: from A import print_results [as 别名]
def run(train, test, language, answer):
results = {}
if language == 'English':
_POS_TAGGER = 'taggers/maxent_treebank_pos_tagger/english.pickle'
tagger = load(_POS_TAGGER)
elif language == 'Spanish':
tagger = ut(cess_esp.tagged_sents())
elif language == 'Catalan':
tagger = ut(cess_cat.tagged_sents())
for lexelt in train:
train_features, y_train = extract_features(train[lexelt],language,tagger)
test_features, _ = extract_features(test[lexelt],language,tagger)
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
"""
B1.c
for lexelt in train:
features = getBestWords(train[lexelt], 30)
train_features = countFeature(features, train[lexelt])
_, y_train = extract_features(train[lexelt], language)
test_features = countFeature(features, test[lexelt])
X_train, X_test = vectorize(train_features, test_features)
results[lexelt] = classify(X_train, X_test, y_train)
B1.c
"""
A.print_results(results, answer)
示例3: run
# 需要导入模块: import A [as 别名]
# 或者: from A import print_results [as 别名]
def run(train, test, language, answer):
results = {}
for lexelt in train:
train_features, y_train = extract_features(train[lexelt])
test_features, _ = extract_features(test[lexelt])
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
A.print_results(results, answer)
示例4: run
# 需要导入模块: import A [as 别名]
# 或者: from A import print_results [as 别名]
def run(train, test, language, answer):
results = {}
#calc_high_frequency_words(train)
print 'Calling A'
s = A.build_s(train)
for lexelt in train:
train_features, y_train = extract_features(train[lexelt],language,lexelt,s[lexelt])
test_features, _ = extract_features(test[lexelt],language,lexelt,s[lexelt])
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train,language)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
A.print_results(results, answer)
print 'ended'
示例5: run
# 需要导入模块: import A [as 别名]
# 或者: from A import print_results [as 别名]
def run(train, test, language, answer):
results = {}
l = len(train)
for i, lexelt in enumerate(train):
sys.stdout.write('\r{} / {} ({}%)'.format(i, l, int(float(i) / l * 100)))
sys.stdout.flush()
train_features, y_train = extract_features(train[lexelt], language)
test_features, _ = extract_features(test[lexelt], language)
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
A.print_results(results, answer)
示例6: run
# 需要导入模块: import A [as 别名]
# 或者: from A import print_results [as 别名]
def run(train, test, language, answer):
results = {}
if language == 'English': language = 'en'
if language == 'Spanish': language = 'spa'
if language == 'Catalan': language = 'cat'
for lexelt in train:
rel_dict = relevance(train[lexelt])
train_features, y_train = extract_features(train[lexelt], language, rel_dict=rel_dict)
test_features, _ = extract_features(test[lexelt], language, rel_dict=rel_dict)
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
A.print_results(results, answer)
示例7: run
# 需要导入模块: import A [as 别名]
# 或者: from A import print_results [as 别名]
def run(train, test, language, answer):
results = {}
tagger = get_tagger(language)
stemmer = get_stemmer(language)
s = build_s(train, stemmer)
for lexelt in train:
words_count, senses_count = get_relavence_info(train[lexelt], stemmer)
train_features, y_train = extract_features(train[lexelt], tagger, words_count, senses_count, stemmer, s[lexelt])
test_features, _ = extract_features(test[lexelt], tagger, words_count, senses_count, stemmer, s[lexelt])
X_train, X_test = vectorize(train_features, test_features)
X_train_new, X_test_new, y_train_new, ids_test = feature_selection(X_train, X_test, y_train)
results[lexelt] = classify(X_train_new, X_test_new, y_train_new, ids_test)
A.print_results(results, answer)
示例8: run
# 需要导入模块: import A [as 别名]
# 或者: from A import print_results [as 别名]
def run(train, test, language, answer):
results = {}
s = build_s(train, language)
for lexelt in train:
feas_set = build_feas_set(train[lexelt], language)
#feas_set = None
train_features, y_train = extract_features(train[lexelt], language, feas_set, s[lexelt])
test_features, _ = extract_features(test[lexelt], language, feas_set, s[lexelt])
# print train_features
X_train, X_test = vectorize(train_features,test_features)
# print X_train
# X_train_new, X_test_new = feature_selection(X_train, X_test,y_train)
# results[lexelt] = classify(X_train_new, X_test_new,y_train)
results[lexelt] = classify(X_train, X_test,y_train)
A.print_results(results, answer)
示例9: run
# 需要导入模块: import A [as 别名]
# 或者: from A import print_results [as 别名]
def run(train, test, language, answer):
print 'running B for language:', language
results = {}
if language.lower() in ['english', 'spanish']:
extract_features.stemmer = nltk.SnowballStemmer(language.lower())
for lexelt in train:
train_features, y_train = extract_features(train[lexelt], language=language)
test_features, _ = extract_features(test[lexelt], language=language)
X_train, X_test = vectorize(train_features,test_features)
if language.lower() in ['english', 'spanish']:
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train)
else:
X_train_new = X_train
X_test_new = X_test
results[lexelt] = classify(X_train_new, X_test_new,y_train)
A.print_results(results, answer)
示例10: run
# 需要导入模块: import A [as 别名]
# 或者: from A import print_results [as 别名]
def run(train, test, language, answer):
results = {}
# tag_and_save(train, test, language)
# load cached POS tags
# print 'loading cached pos tags...'
# train_name = language + '-train.p'
# test_name = language + '-test.p'
# train_pos_tags = pickle.load(open(train_name, 'rb'))
# test_pos_tags = pickle.load(open(test_name, 'rb'))
tagger = None
if POS_WINDOW > 0 or POS_HEAD or FORCE_TAGGER_USE:
tagger = UniversalTagger.EnglishTagger()
if language is 'Spanish':
tagger = UniversalTagger.SpanishTagger()
if language is 'Catalan':
tagger = UniversalTagger.CatalanTagger()
stemmer = None
if STEM:
stemmer = PorterStemmer()
for lexelt in train:
relevance_key = None
if USE_RELEVANCY_SCORES:
relevance_key = top_relevant_words_from_data(train[lexelt])
train_features, y_train = extract_features(train[lexelt], tagger, stemmer, relevance_key)
test_features, _ = extract_features(test[lexelt], tagger, stemmer, relevance_key)
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
A.print_results(results, answer)
示例11: run
# 需要导入模块: import A [as 别名]
# 或者: from A import print_results [as 别名]
def run(train, test, language, answer):
global global_language
global stop_words
global punctuation_unicode
global unigram_tagger
global bigram_tagger
global trigram_tagger
global stemmer
global window_size
global_language = language
if global_language == "english":
window_size = 3
elif global_language == "spanish":
window_size = 2
else:
window_size = 3
global_language = language.lower()
if global_language == "english" or global_language == "spanish":
stop_words = [word.lower() for word in stopwords.words(global_language)]
else:
stop_words = [u'\ufeffa', u'abans', u'algun', u'alguna', u'algunes', u'alguns', u'altre', u'amb', u'ambd\xf3s', u'anar', u'ans', u'aquell', u'aquelles', u'aquells', u'aqu\xed', u'bastant', u'b\xe9', u'cada', u'com', u'consegueixo', u'conseguim', u'conseguir', u'consigueix', u'consigueixen', u'consigueixes', u'dalt', u'de', u'des de', u'dins', u'el', u'elles', u'ells', u'els', u'en', u'ens', u'entre', u'era', u'erem', u'eren', u'eres', u'es', u'\xe9s', u'\xe9ssent', u'est\xe0', u'estan', u'estat', u'estava', u'estem', u'esteu', u'estic', u'ets', u'fa', u'faig', u'fan', u'fas', u'fem', u'fer', u'feu', u'fi', u'haver', u'i', u'incl\xf2s', u'jo', u'la', u'les', u'llarg', u'llavors', u'mentre', u'meu', u'mode', u'molt', u'molts', u'nosaltres', u'o', u'on', u'per', u'per', u'per que', u'per\xf2', u'perqu\xe8', u'podem', u'poden', u'poder', u'podeu', u'potser', u'primer', u'puc', u'quan', u'quant', u'qui', u'sabem', u'saben', u'saber', u'sabeu', u'sap', u'saps', u'sense', u'ser', u'seu', u'seus', u'si', u'soc', u'solament', u'sols', u'som', u'sota', u'tamb\xe9', u'te', u'tene', u'tenim', u'tenir', u'teniu', u'teu', u'tinc', u'tot', u'\xfaltim', u'un', u'un', u'una', u'unes', u'uns', u'\xfas', u'va', u'vaig', u'van', u'vosaltres', u'']
if global_language == "catalan":
stemmer = SnowballStemmer("spanish")
else:
stemmer = SnowballStemmer(global_language)
#train the taggers here and keep the reference global
if global_language == "english":
_POS_TAGGER = 'taggers/maxent_treebank_pos_tagger/english.pickle'
trigram_tagger = load(_POS_TAGGER)
elif global_language == "spanish":
train_sents = nltk.corpus.cess_esp.tagged_sents()
unigram_tagger = nltk.UnigramTagger(train_sents)
bigram_tagger = nltk.BigramTagger(train_sents, backoff = unigram_tagger)
trigram_tagger = nltk.TrigramTagger(train_sents, backoff = bigram_tagger)
else:
train_sents = nltk.corpus.cess_cat.tagged_sents()
unigram_tagger = nltk.UnigramTagger(train_sents)
bigram_tagger = nltk.BigramTagger(train_sents, backoff = unigram_tagger)
trigram_tagger = nltk.TrigramTagger(train_sents, backoff = bigram_tagger)
#we have the taggers ready now. use them to extract the features!
punctuation = list(string.punctuation)
punctuation_unicode = [unicode(punc) for punc in punctuation]
punctuation_unicode.append(unicode("''"))
results = {}
for lexelt in train:
#print lexelt
train_features, y_train = extract_features(train[lexelt])
test_features, _ = extract_features(test[lexelt])
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
A.print_results(results, answer)