本文整理汇总了Python中A类的典型用法代码示例。如果您正苦于以下问题:Python A类的具体用法?Python A怎么用?Python A使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了A类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: classify
def classify(X_train, X_test, y_train):
'''
Train the best classifier on (X_train, and y_train) then predict X_test labels
:param X_train: A dictionary with the following structure
{ instance_id: [w_1 count, w_2 count, ...],
...
}
:param X_test: A dictionary with the following structure
{ instance_id: [w_1 count, w_2 count, ...],
...
}
:param y_train: A dictionary with the following structure
{ instance_id : sense_id }
:return: results: a list of tuples (instance_id, label) where labels are predicted by the best classifier
'''
# create x, y lists from training datas
x_train_list, y_train_list = A.x_y_lists_from_training(X_train, y_train)
# train svm
print 'training svm...'
svm_clf = svm.LinearSVC()
svm_clf.fit(x_train_list, y_train_list)
# predict svm results
print 'predicting svm...'
svm_results = A.predictions_from_data(svm_clf, X_test)
return svm_results
示例2: run
def run(train, test, language, answer):
results = {}
if language == 'English':
_POS_TAGGER = 'taggers/maxent_treebank_pos_tagger/english.pickle'
tagger = load(_POS_TAGGER)
elif language == 'Spanish':
tagger = ut(cess_esp.tagged_sents())
elif language == 'Catalan':
tagger = ut(cess_cat.tagged_sents())
for lexelt in train:
train_features, y_train = extract_features(train[lexelt],language,tagger)
test_features, _ = extract_features(test[lexelt],language,tagger)
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
"""
B1.c
for lexelt in train:
features = getBestWords(train[lexelt], 30)
train_features = countFeature(features, train[lexelt])
_, y_train = extract_features(train[lexelt], language)
test_features = countFeature(features, test[lexelt])
X_train, X_test = vectorize(train_features, test_features)
results[lexelt] = classify(X_train, X_test, y_train)
B1.c
"""
A.print_results(results, answer)
示例3: main
def main(aligned_sents):
ba = BerkeleyAligner(aligned_sents, 10)
A.save_model_output(aligned_sents, ba, "ba.txt")
avg_aer = A.compute_avg_aer(aligned_sents, ba, 50)
print ('Berkeley Aligner')
print ('---------------------------')
print('Average AER: {0:.3f}\n'.format(avg_aer))
示例4: run
def run(train, test, language, answer):
results = {}
total = len(train)
counter = 1
s = build_s(train, language)
#s = {}
# if language == 'English':
# tagger = set_tagger(language)
# else:
tagger = None
#tagger = set_tagger(language)
stemmer = set_stemmer(language)
for lexelt in train:
train_features, y_train = extract_features(train[lexelt], language, tagger, stemmer, s[lexelt])
test_features, _ = extract_features(test[lexelt], language, tagger, stemmer, s[lexelt])
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train, language)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
print str(counter) + ' out of ' + str(total) + ' completed'
counter += 1
A.print_results(results, answer)
示例5: new
def new(line):
line = line.strip()
if A.accept(line):
return A.new(line)
elif C.accept(line):
return C.new(line)
else:
raise SyntaxError("Unknown instruction", (None, -1, 0, line))
示例6: main
def main(aligned_sents):
time.clock()
ba = BerkeleyAligner(aligned_sents, 10)
A.save_model_output(aligned_sents, ba, "ba.txt")
avg_aer = A.compute_avg_aer(aligned_sents, ba, 50)
print ('Berkeley Aligner')
print ('---------------------------')
print('Average AER: {0:.3f}\n'.format(avg_aer))
print "Part B time: " + str(time.clock()) + ' sec'
示例7: main
def main(aligned_sents):
print 'training regular berkeley model'
iters = 10
ba = BerkeleyAligner(aligned_sents, iters)
A.save_model_output(aligned_sents, ba, "ba.txt")
avg_aer = A.compute_avg_aer(aligned_sents, ba, 50, 'berk_errs.txt')
print ('Berkeley Aligner')
print ('iterations:' + str(iters))
print ('---------------------------')
print('Average AER: {0:.3f}\n\n\n'.format(avg_aer))
示例8: main
def main(aligned_sents):
ba = BerkeleyAligner(aligned_sents, 10)
A.save_model_output(aligned_sents, ba, "ba.txt")
avg_aer = A.compute_avg_aer(aligned_sents, ba, 50)
#Report aer for each sentence of first 20 sentences
for i,aligned_sent in enumerate(aligned_sents[:20]):
print "ba , aer of sentence "+str(i)+" "+str(A.compute_avg_aer([aligned_sent],ba,1))
print ('Berkeley Aligner')
print ('---------------------------')
print('Average AER: {0:.3f}\n'.format(avg_aer))
示例9: testCode
def testCode (self):
x = A.a2('a2m-value', 'legal')
self.assertEqual('a2m-value', x.a2member)
self.assertEqual(B.bst.legal, x.a2b)
myobj = B.b1(x, 'legal')
self.assertEqual(myobj.a2elt, x)
x2 = A.a2('anotherValue', 'legal')
myobj.a2elt = x2
self.assertEqual('anotherValue', myobj.a2elt.a2member)
self.assertEqual(B.bst.legal, myobj.a2elt.a2b)
示例10: run
def run(train, test, language, answer):
results = {}
for lexelt in train:
train_features, y_train = extract_features(train[lexelt])
test_features, _ = extract_features(test[lexelt])
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
A.print_results(results, answer)
示例11: run
def run(train, test, language, answer):
results = {}
#calc_high_frequency_words(train)
print 'Calling A'
s = A.build_s(train)
for lexelt in train:
train_features, y_train = extract_features(train[lexelt],language,lexelt,s[lexelt])
test_features, _ = extract_features(test[lexelt],language,lexelt,s[lexelt])
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train,language)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
A.print_results(results, answer)
print 'ended'
示例12: run
def run(train, test, language, answer):
results = {}
l = len(train)
for i, lexelt in enumerate(train):
sys.stdout.write('\r{} / {} ({}%)'.format(i, l, int(float(i) / l * 100)))
sys.stdout.flush()
train_features, y_train = extract_features(train[lexelt], language)
test_features, _ = extract_features(test[lexelt], language)
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
A.print_results(results, answer)
示例13: add_k_word_features_count_to_vector
def add_k_word_features_count_to_vector(vector, left_tokens, right_tokens, window_size, head=None):
words = A.k_nearest_words_vector_from_tokens(left_tokens, right_tokens, window_size)
for word in words:
vector[word] = vector[word] + 1 if word in vector else 1
if head:
vector[head] = 1
示例14: main
def main():
if len(sys.argv) != 7:
print 'Usage: python main.py <input_training file> <input test file> <output KNN file> <output SVM file> <output best file> <language>'
sys.exit(0)
train_file = sys.argv[1]
test_file = sys.argv[2]
knn_answer = sys.argv[3]
svm_answer = sys.argv[4]
best_answer = sys.argv[5]
language = sys.argv[6]
train_set = parse_data(train_file)
test_set = parse_data(test_file)
A.run(train_set, test_set, language, knn_answer, svm_answer)
B.run(train_set, test_set, language, best_answer)
示例15: run
def run(train, test, language, answer):
results = {}
if language == 'English': language = 'en'
if language == 'Spanish': language = 'spa'
if language == 'Catalan': language = 'cat'
for lexelt in train:
rel_dict = relevance(train[lexelt])
train_features, y_train = extract_features(train[lexelt], language, rel_dict=rel_dict)
test_features, _ = extract_features(test[lexelt], language, rel_dict=rel_dict)
X_train, X_test = vectorize(train_features,test_features)
X_train_new, X_test_new = feature_selection(X_train, X_test,y_train)
results[lexelt] = classify(X_train_new, X_test_new,y_train)
A.print_results(results, answer)