本文整理汇总了Python中A.minimax方法的典型用法代码示例。如果您正苦于以下问题:Python A.minimax方法的具体用法?Python A.minimax怎么用?Python A.minimax使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类A
的用法示例。
在下文中一共展示了A.minimax方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: comp_move
# 需要导入模块: import A [as 别名]
# 或者: from A import minimax [as 别名]
def comp_move(self):
if self.comp == 'A':
move = A.minimax(self)
elif self.comp == 'B':
vals = {}
nodes = []
highest = 0
best = ()
moveset = self.valid_moves('W')
for move in moveset:
n = tree.Node(self, 3, 'W', move[0], move[1], moveset) # default depth level 3
nodes.append(n)
for n in nodes:
ret = B.alphabeta(n, 3, -10000, 10000, 'W')
x, y = n.get_x(), n.get_y()
vals[(x,y)] = ret
if ret > highest:
highest = ret
best = (x,y)
return best
else:
move = C.master(self)
return move
示例2: master
# 需要导入模块: import A [as 别名]
# 或者: from A import minimax [as 别名]
def master(game):
""" Given a game and the current board it should go to level depth to determine which move to make. Default depth is 3
Colour is the colour the computer is playing"""
def max_val(game, level):
""" Optimal choice for computer. Returns the move that the computer should make in order to maximise its heuristic value """
level += 1
colour = 'W'
# need to explore deeper nodes
if level <= depth:
value = lost # should never be chosen
best = [0, 0] # just a dummy move
moves = game.valid_moves(colour).keys()#[1]
if len(moves)==0: # if we're at a leaf
best = "pass"
value = min_val(game, level)
elif len(moves) == 1:
best = moves[0]
moveset = game.valid_moves(colour)#[0]
new = game.copy()
new.make_move(moves[0][0],moves[0][1], moveset)
value = min_val(new, level)
else:
for move in moves:
moveset = game.valid_moves(colour)#[0]
new = game.copy()
new.make_move(move[0],move[1], moveset)
temp = min_val(new, level)
if temp[0] > value:
value = temp[0]
best = move
return [value, best]
else:
value = eval2(game, 'W')
best = [0,0] # just need a dummy value
return [value, best] # smallest possible heuristic therefore will never be chosen
def min_val(game, level):
""" Optimal choice for opponent. Returns the move that the opponent should make in order to minimise the computers heuristic """
level += 1
colour = 'B'
if level <= depth:
value = won # will never be chosen as we are looking for the min
best = [0, 0] # just a dummy move
moves = game.valid_moves(colour).keys()#[1]
if len(moves)==0: # if we're at a leaf
best = "pass"
value = max_val(game, level)
elif len(moves) == 1:
best = moves[0]
new = game.copy()
moveset = new.valid_moves(colour)#[0]
new.make_move(moves[0][0],moves[0][1], moveset)
value = max_val(new, level)
else:
for move in moves:
new = game.copy()
moveset = new.valid_moves(colour)#[0]
new.make_move(move[0],move[1], moveset)
temp = max_val(new, level) # the optimal move and value that computer will make
if temp[0] < value: # if we have a smaller heuristic option choose it
value = temp[0]
best = move
return [value, best]
else:
value = eval2(game, 'W')
best = [0,0] # just need a dummy value
return [value, best] #largest possible heuristic therefore will never be chosen
def eval1(game, colour):
if colour=="W":
return game.board.get_white()
else:
return game.board.get_black()
def eval2(game, colour):
heur = 0
# for each token multiply it by stability and add them up
toks = game.board.get_alltoks()
for tok in toks:
if tok.get_colour() == colour:
heur += tok.get_stability()*2
# add twice the number of possible moves
heur += len(new.valid_moves(colour))
return heur
# MINIMAX BODY
# global vars
level = 1
depth = 3
moves = game.valid_moves('W').keys()
if len(moves) == 0: # no moves possible
return "pass" # this should never be run because it should be found in premove
elif len(moves) == 1: # only one possible move
return moves[0]
elif len(moves) == 2:
# choose from best two moves with 20% chance of the worse move
best = A.minimax(game)
rand = random.random()
if rand <= .8:
return best
#.........这里部分代码省略.........