当前位置: 首页>>代码示例>>Java>>正文


Java Evaluation.incorrect方法代码示例

本文整理汇总了Java中weka.classifiers.Evaluation.incorrect方法的典型用法代码示例。如果您正苦于以下问题:Java Evaluation.incorrect方法的具体用法?Java Evaluation.incorrect怎么用?Java Evaluation.incorrect使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在weka.classifiers.Evaluation的用法示例。


在下文中一共展示了Evaluation.incorrect方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: crossValidate

import weka.classifiers.Evaluation; //导入方法依赖的package包/类
/**
  * Utility method for fast 5-fold cross validation of a naive bayes
  * model
  *
  * @param fullModel a <code>NaiveBayesUpdateable</code> value
  * @param trainingSet an <code>Instances</code> value
  * @param r a <code>Random</code> value
  * @return a <code>double</code> value
  * @exception Exception if an error occurs
  */
 public static double crossValidate(NaiveBayesUpdateable fullModel,
		       Instances trainingSet,
		       Random r) throws Exception {
   // make some copies for fast evaluation of 5-fold xval
   Classifier [] copies = AbstractClassifier.makeCopies(fullModel, 5);
   Evaluation eval = new Evaluation(trainingSet);
   // make some splits
   for (int j = 0; j < 5; j++) {
     Instances test = trainingSet.testCV(5, j);
     // unlearn these test instances
     for (int k = 0; k < test.numInstances(); k++) {
test.instance(k).setWeight(-test.instance(k).weight());
((NaiveBayesUpdateable)copies[j]).updateClassifier(test.instance(k));
// reset the weight back to its original value
test.instance(k).setWeight(-test.instance(k).weight());
     }
     eval.evaluateModel(copies[j], test);
   }
   return eval.incorrect();
 }
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:31,代码来源:NBTreeNoSplit.java

示例2: modelErrors

import weka.classifiers.Evaluation; //导入方法依赖的package包/类
/**
    *Updates the numIncorrectModel field for all nodes. This is needed for calculating the alpha-values. 
    */
   public void modelErrors() throws Exception{
	
Evaluation eval = new Evaluation(m_train);
	
if (!m_isLeaf) {
    m_isLeaf = true;
    eval.evaluateModel(this, m_train);
    m_isLeaf = false;
    m_numIncorrectModel = eval.incorrect();
    for (int i = 0; i < m_sons.length; i++) m_sons[i].modelErrors();
} else {
    eval.evaluateModel(this, m_train);
    m_numIncorrectModel = eval.incorrect();
}
   }
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:19,代码来源:LMTNode.java

示例3: crossValidate

import weka.classifiers.Evaluation; //导入方法依赖的package包/类
/**
  * Utility method for fast 5-fold cross validation of a naive bayes
  * model
  *
  * @param fullModel a <code>NaiveBayesUpdateable</code> value
  * @param trainingSet an <code>Instances</code> value
  * @param r a <code>Random</code> value
  * @return a <code>double</code> value
  * @exception Exception if an error occurs
  */
 public static double crossValidate(NaiveBayesUpdateable fullModel,
		       Instances trainingSet,
		       Random r) throws Exception {
   // make some copies for fast evaluation of 5-fold xval
   Classifier [] copies = Classifier.makeCopies(fullModel, 5);
   Evaluation eval = new Evaluation(trainingSet);
   // make some splits
   for (int j = 0; j < 5; j++) {
     Instances test = trainingSet.testCV(5, j);
     // unlearn these test instances
     for (int k = 0; k < test.numInstances(); k++) {
test.instance(k).setWeight(-test.instance(k).weight());
((NaiveBayesUpdateable)copies[j]).updateClassifier(test.instance(k));
// reset the weight back to its original value
test.instance(k).setWeight(-test.instance(k).weight());
     }
     eval.evaluateModel(copies[j], test);
   }
   return eval.incorrect();
 }
 
开发者ID:williamClanton,项目名称:jbossBA,代码行数:31,代码来源:NBTreeNoSplit.java

示例4: modelErrors

import weka.classifiers.Evaluation; //导入方法依赖的package包/类
/**
  * Updates the numIncorrectModel field for all nodes when subtree (to be 
  * pruned) is rooted. This is needed for calculating the alpha-values.
  * 
  * @throws Exception 	if something goes wrong
  */
 public void modelErrors() throws Exception{
   Evaluation eval = new Evaluation(m_train);

   if (!m_isLeaf) {
     m_isLeaf = true; //temporarily make leaf

     // calculate distribution for evaluation
     eval.evaluateModel(this, m_train);
     m_numIncorrectModel = eval.incorrect();

     m_isLeaf = false;

     for (int i = 0; i < m_Successors.length; i++)
m_Successors[i].modelErrors();

   } else {
     eval.evaluateModel(this, m_train);
     m_numIncorrectModel = eval.incorrect();
   }       
 }
 
开发者ID:williamClanton,项目名称:jbossBA,代码行数:27,代码来源:SimpleCart.java


注:本文中的weka.classifiers.Evaluation.incorrect方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。