本文整理汇总了Java中weka.classifiers.Evaluation.fMeasure方法的典型用法代码示例。如果您正苦于以下问题:Java Evaluation.fMeasure方法的具体用法?Java Evaluation.fMeasure怎么用?Java Evaluation.fMeasure使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类weka.classifiers.Evaluation
的用法示例。
在下文中一共展示了Evaluation.fMeasure方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: printMeasures
import weka.classifiers.Evaluation; //导入方法依赖的package包/类
public static void printMeasures(final Evaluation eval) {
final List<String> cat = EntityClassMap.entityClasses;
for (final String cl : EntityClassMap.entityClasses) {
final double f1 = eval.fMeasure(cat.indexOf(cl));
final double p = eval.precision(cat.indexOf(cl));
final double r = eval.recall(cat.indexOf(cl));
LOG.info("=== classes ===");
LOG.info("class: " + cl);
LOG.info("fMeasure: " + f1);
LOG.info("precision: " + p);
LOG.info("recall: " + r);
}
}
示例2: computeSingleRunResults
import weka.classifiers.Evaluation; //导入方法依赖的package包/类
public void computeSingleRunResults(MethodEvaluation methodEvaluation)
{
Evaluation evaluation = methodEvaluation.getEvaluation();
int hamIndex = HAM.ordinal();
int spamIndex = SPAM.ordinal();
Double hamPrecision = 100.0 * evaluation.precision(hamIndex);
Double spamPrecision = 100.0 * evaluation.precision(spamIndex);
Double weightedPrecision = 100.0 * evaluation.weightedPrecision();
Double hamRecall = 100.0 * evaluation.recall(hamIndex);
Double spamRecall = 100.0 * evaluation.recall(spamIndex);
Double weightedRecall = 100.0 * evaluation.weightedRecall();
Double hamAreaUnderPRC = 100.0 * evaluation.areaUnderPRC(hamIndex);
Double spamAreaUnderPRC = 100.0 * evaluation.areaUnderPRC(spamIndex);
Double weightedAreaUnderPRC = 100.0 * evaluation.weightedAreaUnderPRC();
Double hamAreaUnderROC = 100.0 * evaluation.areaUnderROC(hamIndex);
Double spamAreaUnderROC = 100.0 * evaluation.areaUnderROC(spamIndex);
Double weightedAreaUnderROC = 100.0 * evaluation.weightedAreaUnderROC();
Double hamFMeasure = 100.0 * evaluation.fMeasure(hamIndex);
Double spamFMeasure = 100.0 * evaluation.fMeasure(spamIndex);
Double weightedFMeasure = 100.0 * evaluation.weightedFMeasure();
Double trainTime = (double) (methodEvaluation.getTrainEnd() - methodEvaluation.getTrainStart());
Double testTime = (double) (methodEvaluation.getTestEnd() - methodEvaluation.getTestStart());
addSingleRunResult(Metric.HAM_PRECISION, hamPrecision);
addSingleRunResult(Metric.SPAM_PRECISION, spamPrecision);
addSingleRunResult(Metric.WEIGHTED_PRECISION, weightedPrecision);
addSingleRunResult(Metric.HAM_RECALL, hamRecall);
addSingleRunResult(Metric.SPAM_RECALL, spamRecall);
addSingleRunResult(Metric.WEIGHTED_RECALL, weightedRecall);
addSingleRunResult(Metric.HAM_AREA_UNDER_PRC, hamAreaUnderPRC);
addSingleRunResult(Metric.SPAM_AREA_UNDER_PRC, spamAreaUnderPRC);
addSingleRunResult(Metric.WEIGHTED_AREA_UNDER_PRC, weightedAreaUnderPRC);
addSingleRunResult(Metric.HAM_AREA_UNDER_ROC, hamAreaUnderROC);
addSingleRunResult(Metric.SPAM_AREA_UNDER_ROC, spamAreaUnderROC);
addSingleRunResult(Metric.WEIGHTED_AREA_UNDER_ROC, weightedAreaUnderROC);
addSingleRunResult(Metric.HAM_F_MEASURE, hamFMeasure);
addSingleRunResult(Metric.SPAM_F_MEASURE, spamFMeasure);
addSingleRunResult(Metric.WEIGHTED_F_MEASURE, weightedFMeasure);
addSingleRunResult(Metric.TRAIN_TIME, trainTime);
addSingleRunResult(Metric.TEST_TIME, testTime);
}