本文整理汇总了Java中org.apache.commons.math3.geometry.euclidean.threed.Vector3D.scalarMultiply方法的典型用法代码示例。如果您正苦于以下问题:Java Vector3D.scalarMultiply方法的具体用法?Java Vector3D.scalarMultiply怎么用?Java Vector3D.scalarMultiply使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math3.geometry.euclidean.threed.Vector3D
的用法示例。
在下文中一共展示了Vector3D.scalarMultiply方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: doPhysicsStep
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; //导入方法依赖的package包/类
void doPhysicsStep(int simFrequency_hz) {
// ############## BEGIN Update vehicle position #################
Vector3D drag_accel = this.getVelocity().scalarMultiply(mCfg_drag * simFrequency_hz);
Vector3D accel = mCfg_g_accel.add(mEngineForce).subtract(drag_accel);
Vector3D delta_v = accel.scalarMultiply(1.0 / simFrequency_hz);
this.setVelocity(this.getVelocity().add(delta_v));
// NOTE: Update of position happens in Platform base class
// ################ BEGIN Check vertical distance to ground (EXPENSIVE!) ###############
/*
if (mCheckGround) {
Vector3D pos = getPosition();
Vector3D ground = scene.getGroundPointAt(pos);
mIsOnGround = (ground != null && pos.getZ() < ground.getZ());
if (mIsOnGround) {
setPosition(new Vector3D(pos.getX(), pos.getY(), ground.getZ()));
Vector3D v = getVelocity();
if (v.getNorm() > 0 && v.getZ() < 0) {
setVelocity(new Vector3D(v.getX(), v.getY(), 0));
}
}
}
*/
// ################ END Check vertical distance to ground (EXPENSIVE!) ###############
// ############## END Update vehicle position #################
}
示例2: intersect
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; //导入方法依赖的package包/类
/**
* Determine point of intersection with another arc
*
* @return point of intersection, or null if there is no unique intersection
*/
public GeoPoint intersect(GeoArc arcB) {
GeoArc arcA = this;
// If either arc is zero-length, no solution exists
if (arcA.length() < TOLERANCE) return null;
if (arcB.length() < TOLERANCE) return null;
// Convert points to cartesian
Vector3D p1 = arcA.pointA.toCartesian();
Vector3D p2 = arcA.pointB.toCartesian();
Vector3D p3 = arcB.pointA.toCartesian();
Vector3D p4 = arcB.pointB.toCartesian();
// Determine planes on which arcs lie
Vector3D vA = Vector3D.crossProduct(p1, p2);
Vector3D vB = Vector3D.crossProduct(p3, p4);
// Zero vector indicates antipodal points, which have no solution
if (vA.getNormSq() <= 0) return null;
if (vB.getNormSq() <= 0) return null;
// Determine line where planes intersect (which lies between points of circle intersection)
Vector3D v = Vector3D.crossProduct(vA.normalize(), vB.normalize());
double vLenSq = v.getNormSq();
// Zero vector indicates arcs on the same plane, which would have infinite solutions
if (vLenSq <= 0) return null;
// Normalize to unit length, which will result in a point on the sphere surface
v = v.scalarMultiply(1 / Math.sqrt(vLenSq));
// Convert the intersection points from cartesian to GeoPoint
GeoPoint s1 = new GeoPoint(v);
GeoPoint s2 = new GeoPoint(v.negate());
// If one of the points lies on both arcs, it is the solution
if (arcA.contains(s1) && arcB.contains(s1)) {
return s1;
}
if (arcA.contains(s2) && arcB.contains(s2)) {
return s2;
}
return null;
}