本文整理汇总了Java中org.apache.commons.math3.geometry.euclidean.threed.Vector3D.dotProduct方法的典型用法代码示例。如果您正苦于以下问题:Java Vector3D.dotProduct方法的具体用法?Java Vector3D.dotProduct怎么用?Java Vector3D.dotProduct使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math3.geometry.euclidean.threed.Vector3D
的用法示例。
在下文中一共展示了Vector3D.dotProduct方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: cotangent
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; //导入方法依赖的package包/类
private double cotangent(Vector3D a, Vector3D b, Vector3D c) {
Vector3D ba = a.subtract(b);
Vector3D bc = c.subtract(b);
return ba.dotProduct(bc) / bc.crossProduct(ba).getNorm();
}
示例2: getRayIntersection
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; //导入方法依赖的package包/类
@Override
public double[] getRayIntersection(Vector3D rayOrigin, Vector3D rayDir) {
// See http://www.lighthouse3d.com/tutorials/maths/ray-triangle-intersection/
double[] result = new double[1];
Vector3D e1 = this.verts[1].pos.subtract(this.verts[0].pos);
Vector3D e2 = this.verts[2].pos.subtract(this.verts[0].pos);
Vector3D h = rayDir.crossProduct(e2);
double a = e1.dotProduct(h);
if (a > -0.00001 && a < 0.00001) {
result[0] = -1;
return result;
}
double f = 1.0 / a;
Vector3D s = rayOrigin.subtract(this.verts[0].pos);
double u = f * s.dotProduct(h);
if (u < 0.0 || u > 1.0) {
result[0] = -1;
return result;
}
Vector3D q = s.crossProduct(e1);
double v = f * rayDir.dotProduct(q);
if (v < 0.0 || u + v > 1.0) {
result[0] = -1;
return result;
}
double t = f * e2.dotProduct(q);
if (t > 0.00001) {
result[0] = t;
return result;
}
result[0] = -1;
return result;
}
示例3: getRayIntersection
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; //导入方法依赖的package包/类
@Override
public double[] getRayIntersection(Vector3D rayOrigin, Vector3D rayDir) {
// TODO 4: Source?
Vector3D origin = rayOrigin.subtract(this.center);
double[] result = new double[2];
// Compute A, B and C coefficients:
double a = rayDir.dotProduct(rayDir);
double b = 2 * rayDir.dotProduct(origin);
double c = origin.dotProduct(origin) - this.radius * this.radius;
// Find discriminant:
double disc = b * b - 4 * a * c;
// if discriminant is negative there are no real roots, so return
// false as ray misses sphere:
if (disc < 0) {
result[0] = -1;
return result;
}
// compute q:
double distSqrt = Math.sqrt(disc);
double q = 0;
if (b < 0) {
q = (-b - distSqrt) / 2;
} else {
q = (-b + distSqrt) / 2;
}
double t0 = q / a;
double t1 = c / q;
if (t0 > t1) {
double temp = t0;
t0 = t1;
t1 = temp;
}
// if t1 is less than zero, the object is in the ray's negative direction
// and consequently the ray misses the sphere
if (t1 < 0) {
result[0] = -1;
return result;
}
// if t0 is less than zero, the intersection point is at t1
if (t0 < 0) {
result[0] = t1;
return result;
}
// else the intersection point is at t0
else {
result[0] = t0;
return result;
}
}
示例4: sameOrientationAs
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; //导入方法依赖的package包/类
/** {@inheritDoc} */
public boolean sameOrientationAs(final Hyperplane<Sphere2D> other) {
final Circle otherC = (Circle) other;
return Vector3D.dotProduct(pole, otherC.pole) >= 0.0;
}