本文整理汇总了Java中org.apache.commons.math3.geometry.euclidean.threed.Vector3D.crossProduct方法的典型用法代码示例。如果您正苦于以下问题:Java Vector3D.crossProduct方法的具体用法?Java Vector3D.crossProduct怎么用?Java Vector3D.crossProduct使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math3.geometry.euclidean.threed.Vector3D
的用法示例。
在下文中一共展示了Vector3D.crossProduct方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: createRegularPolygonVertices
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; //导入方法依赖的package包/类
/** Build the vertices representing a regular polygon.
* @param center center of the polygon (the center is in the inside half)
* @param meridian point defining the reference meridian for first polygon vertex
* @param outsideRadius distance of the vertices to the center
* @param n number of sides of the polygon
* @return vertices array
*/
private static S2Point[] createRegularPolygonVertices(final Vector3D center, final Vector3D meridian,
final double outsideRadius, final int n) {
final S2Point[] array = new S2Point[n];
final Rotation r0 = new Rotation(Vector3D.crossProduct(center, meridian),
outsideRadius, RotationConvention.VECTOR_OPERATOR);
array[0] = new S2Point(r0.applyTo(center));
final Rotation r = new Rotation(center, MathUtils.TWO_PI / n, RotationConvention.VECTOR_OPERATOR);
for (int i = 1; i < n; ++i) {
array[i] = new S2Point(r.applyTo(array[i - 1].getVector()));
}
return array;
}
示例2: intersect
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; //导入方法依赖的package包/类
/**
* Determine point of intersection with another arc
*
* @return point of intersection, or null if there is no unique intersection
*/
public GeoPoint intersect(GeoArc arcB) {
GeoArc arcA = this;
// If either arc is zero-length, no solution exists
if (arcA.length() < TOLERANCE) return null;
if (arcB.length() < TOLERANCE) return null;
// Convert points to cartesian
Vector3D p1 = arcA.pointA.toCartesian();
Vector3D p2 = arcA.pointB.toCartesian();
Vector3D p3 = arcB.pointA.toCartesian();
Vector3D p4 = arcB.pointB.toCartesian();
// Determine planes on which arcs lie
Vector3D vA = Vector3D.crossProduct(p1, p2);
Vector3D vB = Vector3D.crossProduct(p3, p4);
// Zero vector indicates antipodal points, which have no solution
if (vA.getNormSq() <= 0) return null;
if (vB.getNormSq() <= 0) return null;
// Determine line where planes intersect (which lies between points of circle intersection)
Vector3D v = Vector3D.crossProduct(vA.normalize(), vB.normalize());
double vLenSq = v.getNormSq();
// Zero vector indicates arcs on the same plane, which would have infinite solutions
if (vLenSq <= 0) return null;
// Normalize to unit length, which will result in a point on the sphere surface
v = v.scalarMultiply(1 / Math.sqrt(vLenSq));
// Convert the intersection points from cartesian to GeoPoint
GeoPoint s1 = new GeoPoint(v);
GeoPoint s2 = new GeoPoint(v.negate());
// If one of the points lies on both arcs, it is the solution
if (arcA.contains(s1) && arcB.contains(s1)) {
return s1;
}
if (arcA.contains(s2) && arcB.contains(s2)) {
return s2;
}
return null;
}
示例3: getRayIntersection
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; //导入方法依赖的package包/类
@Override
public double[] getRayIntersection(Vector3D rayOrigin, Vector3D rayDir) {
// See http://www.lighthouse3d.com/tutorials/maths/ray-triangle-intersection/
double[] result = new double[1];
Vector3D e1 = this.verts[1].pos.subtract(this.verts[0].pos);
Vector3D e2 = this.verts[2].pos.subtract(this.verts[0].pos);
Vector3D h = rayDir.crossProduct(e2);
double a = e1.dotProduct(h);
if (a > -0.00001 && a < 0.00001) {
result[0] = -1;
return result;
}
double f = 1.0 / a;
Vector3D s = rayOrigin.subtract(this.verts[0].pos);
double u = f * s.dotProduct(h);
if (u < 0.0 || u > 1.0) {
result[0] = -1;
return result;
}
Vector3D q = s.crossProduct(e1);
double v = f * rayDir.dotProduct(q);
if (v < 0.0 || u + v > 1.0) {
result[0] = -1;
return result;
}
double t = f * e2.dotProduct(q);
if (t > 0.00001) {
result[0] = t;
return result;
}
result[0] = -1;
return result;
}