本文整理汇总了Java中java.math.BigInteger.negate方法的典型用法代码示例。如果您正苦于以下问题:Java BigInteger.negate方法的具体用法?Java BigInteger.negate怎么用?Java BigInteger.negate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类java.math.BigInteger
的用法示例。
在下文中一共展示了BigInteger.negate方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: main
import java.math.BigInteger; //导入方法依赖的package包/类
public static void main(String[] args) {
Random rnd = new Random(1234);
for (int i=0; i<2000; i++) {
BigInteger m = new BigInteger(800, rnd);
BigInteger base = new BigInteger(16, rnd);
if (rnd.nextInt() % 1 == 0)
base = base.negate();
BigInteger exp = new BigInteger(8, rnd);
BigInteger z = base.modPow(exp, m);
BigInteger w = base.pow(exp.intValue()).mod(m);
if (!z.equals(w)){
System.err.println(base +" ** " + exp + " mod "+ m);
System.err.println("modPow : " + z);
System.err.println("pow.mod: " + w);
throw new RuntimeException("BigInteger modPow failure.");
}
}
}
示例2: roundToBigInteger
import java.math.BigInteger; //导入方法依赖的package包/类
/**
* Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified
* rounding mode, if possible.
*
* @throws ArithmeticException if
* <ul>
* <li>{@code x} is infinite or NaN
* <li>{@code x} is not a mathematical integer and {@code mode} is
* {@link RoundingMode#UNNECESSARY}
* </ul>
*/
@GwtIncompatible("#roundIntermediate, java.lang.Math.getExponent, "
+ "com.google_voltpatches.common.math.DoubleUtils")
public static BigInteger roundToBigInteger(double x, RoundingMode mode) {
x = roundIntermediate(x, mode);
if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) {
return BigInteger.valueOf((long) x);
}
int exponent = getExponent(x);
long significand = getSignificand(x);
BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS);
return (x < 0) ? result.negate() : result;
}
示例3: sMod
import java.math.BigInteger; //导入方法依赖的package包/类
public void sMod(DataWord word) {
if (word.isZero()) {
this.and(ZERO);
return;
}
BigInteger result = sValue().abs().mod(word.sValue().abs());
result = (sValue().signum() == -1) ? result.negate() : result;
this.data = ByteUtil.copyToArray(result.and(MAX_VALUE));
}
示例4: decodeBigInteger
import java.math.BigInteger; //导入方法依赖的package包/类
/**
* 将字符串类型的数字转换成BigInteger,支持十进制、十六进制、八进制写法
*
* @param value
* @return
*/
private static BigInteger decodeBigInteger(String value) {
int radix = 10;
int index = 0;
boolean negative = false;
if (value.startsWith("-")) {
negative = true;
index++;
}
if (value.startsWith("0x", index) || value.startsWith("0X", index)) {
index += 2;
radix = 16;
}
else if (value.startsWith("#", index)) {
index++;
radix = 16;
}
else if (value.startsWith("0", index) && value.length() > 1 + index) {
index++;
radix = 8;
}
BigInteger result = new BigInteger(value.substring(index), radix);
return (negative ? result.negate() : result);
}
示例5: format
import java.math.BigInteger; //导入方法依赖的package包/类
/**
* Format a BigInteger to produce a string.
* @param number The BigInteger to format
* @param result where the text is to be appended
* @param delegate notified of locations of sub fields
* @return The formatted number string
* @exception ArithmeticException if rounding is needed with rounding
* mode being set to RoundingMode.UNNECESSARY
* @see java.text.FieldPosition
*/
private StringBuffer format(BigInteger number, StringBuffer result,
FieldDelegate delegate, boolean formatLong) {
if (multiplier != 1) {
number = number.multiply(getBigIntegerMultiplier());
}
boolean isNegative = number.signum() == -1;
if (isNegative) {
number = number.negate();
}
synchronized(digitList) {
int maxIntDigits, minIntDigits, maxFraDigits, minFraDigits, maximumDigits;
if (formatLong) {
maxIntDigits = super.getMaximumIntegerDigits();
minIntDigits = super.getMinimumIntegerDigits();
maxFraDigits = super.getMaximumFractionDigits();
minFraDigits = super.getMinimumFractionDigits();
maximumDigits = maxIntDigits + maxFraDigits;
} else {
maxIntDigits = getMaximumIntegerDigits();
minIntDigits = getMinimumIntegerDigits();
maxFraDigits = getMaximumFractionDigits();
minFraDigits = getMinimumFractionDigits();
maximumDigits = maxIntDigits + maxFraDigits;
if (maximumDigits < 0) {
maximumDigits = Integer.MAX_VALUE;
}
}
digitList.set(isNegative, number,
useExponentialNotation ? maximumDigits : 0);
return subformat(result, delegate, isNegative, true,
maxIntDigits, minIntDigits, maxFraDigits, minFraDigits);
}
}
示例6: divideLarge
import java.math.BigInteger; //导入方法依赖的package包/类
/**
* Sanity test for Burnikel-Ziegler division. The Burnikel-Ziegler division
* algorithm is used when each of the dividend and the divisor has at least
* a specified number of ints in its representation. This test is based on
* the observation that if {@code w = u*pow(2,a)} and {@code z = v*pow(2,b)}
* where {@code abs(u) > abs(v)} and {@code a > b && b > 0}, then if
* {@code w/z = q1*z + r1} and {@code u/v = q2*v + r2}, then
* {@code q1 = q2*pow(2,a-b)} and {@code r1 = r2*pow(2,b)}. The test
* ensures that {@code v} is just under the B-Z threshold, that {@code z} is
* over the threshold and {@code w} is much larger than {@code z}. This
* implies that {@code u/v} uses the standard division algorithm and
* {@code w/z} uses the B-Z algorithm. The results of the two algorithms
* are then compared using the observation described in the foregoing and
* if they are not equal a failure is logged.
*/
public static void divideLarge() {
int failCount = 0;
BigInteger base = BigInteger.ONE.shiftLeft(BITS_BURNIKEL_ZIEGLER + BITS_BURNIKEL_ZIEGLER_OFFSET - 33);
for (int i=0; i<SIZE; i++) {
BigInteger addend = new BigInteger(BITS_BURNIKEL_ZIEGLER + BITS_BURNIKEL_ZIEGLER_OFFSET - 34, rnd);
BigInteger v = base.add(addend);
BigInteger u = v.multiply(BigInteger.valueOf(2 + rnd.nextInt(Short.MAX_VALUE - 1)));
if(rnd.nextBoolean()) {
u = u.negate();
}
if(rnd.nextBoolean()) {
v = v.negate();
}
int a = BITS_BURNIKEL_ZIEGLER_OFFSET + rnd.nextInt(16);
int b = 1 + rnd.nextInt(16);
BigInteger w = u.multiply(BigInteger.ONE.shiftLeft(a));
BigInteger z = v.multiply(BigInteger.ONE.shiftLeft(b));
BigInteger[] divideResult = u.divideAndRemainder(v);
divideResult[0] = divideResult[0].multiply(BigInteger.ONE.shiftLeft(a - b));
divideResult[1] = divideResult[1].multiply(BigInteger.ONE.shiftLeft(b));
BigInteger[] bzResult = w.divideAndRemainder(z);
if (divideResult[0].compareTo(bzResult[0]) != 0 ||
divideResult[1].compareTo(bzResult[1]) != 0) {
failCount++;
}
}
report("divideLarge", failCount);
}
示例7: decodeBigInteger
import java.math.BigInteger; //导入方法依赖的package包/类
/**
* Decode a {@link java.math.BigInteger} from the supplied {@link String}
* value.
* <p>
* Supports decimal, hex, and octal notation.
*
* @see BigInteger#BigInteger(String, int)
*/
private static BigInteger decodeBigInteger(String value) {
int radix = 10;
int index = 0;
boolean negative = false;
// Handle minus sign, if present.
if (value.startsWith("-")) {
negative = true;
index++;
}
// Handle radix specifier, if present.
if (value.startsWith("0x", index) || value.startsWith("0X", index)) {
index += 2;
radix = 16;
} else if (value.startsWith("#", index)) {
index++;
radix = 16;
} else if (value.startsWith("0", index) && value.length() > 1 + index) {
index++;
radix = 8;
}
BigInteger result = new BigInteger(value.substring(index), radix);
return (negative ? result.negate() : result);
}
示例8: decodeBigInteger
import java.math.BigInteger; //导入方法依赖的package包/类
/**
* Decode a {@link java.math.BigInteger} from the supplied {@link String} value.
* <p>Supports decimal, hex, and octal notation.
* @see BigInteger#BigInteger(String, int)
*/
private static BigInteger decodeBigInteger(String value) {
int radix = 10;
int index = 0;
boolean negative = false;
// Handle minus sign, if present.
if (value.startsWith("-")) {
negative = true;
index++;
}
// Handle radix specifier, if present.
if (value.startsWith("0x", index) || value.startsWith("0X", index)) {
index += 2;
radix = 16;
}
else if (value.startsWith("#", index)) {
index++;
radix = 16;
}
else if (value.startsWith("0", index) && value.length() > 1 + index) {
index++;
radix = 8;
}
BigInteger result = new BigInteger(value.substring(index), radix);
return (negative ? result.negate() : result);
}
示例9: sMod
import java.math.BigInteger; //导入方法依赖的package包/类
public void sMod(cm.aptoide.pt.ethereum.ethereumj.vm.DataWord word) {
if (word.isZero()) {
this.and(ZERO);
return;
}
BigInteger result = sValue().abs()
.mod(word.sValue()
.abs());
result = (sValue().signum() == -1) ? result.negate() : result;
this.data = ByteUtil.copyToArray(result.and(MAX_VALUE));
}
示例10: sanitize
import java.math.BigInteger; //导入方法依赖的package包/类
/**
* Compute <code>value*signum</code> where value==null is treated as
* value==0.
* @param value Value to sanitize.
* @param signum 0 to sanitize to 0, > 0 to sanitize to <code>value</code>, < 0 to sanitize to negative <code>value</code>.
*
* @return non-null {@link BigDecimal}.
*/
private static BigDecimal sanitize(BigInteger value, int signum) {
if (signum == 0 || value == null) {
return ZERO;
}
if (signum > 0) {
return new BigDecimal(value);
}
return new BigDecimal(value.negate());
}
示例11: roundToBigInteger
import java.math.BigInteger; //导入方法依赖的package包/类
/**
* Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified
* rounding mode, if possible.
*
* @throws ArithmeticException if
* <ul>
* <li>{@code x} is infinite or NaN
* <li>{@code x} is not a mathematical integer and {@code mode} is
* {@link RoundingMode#UNNECESSARY}
* </ul>
*/
// #roundIntermediate, java.lang.Math.getExponent, com.google.common.math.DoubleUtils
@GwtIncompatible
public static BigInteger roundToBigInteger(double x, RoundingMode mode) {
x = roundIntermediate(x, mode);
if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) {
return BigInteger.valueOf((long) x);
}
int exponent = getExponent(x);
long significand = getSignificand(x);
BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS);
return (x < 0) ? result.negate() : result;
}
示例12: getLucas
import java.math.BigInteger; //导入方法依赖的package包/类
/**
* Calculates the Lucas Sequence elements <code>U<sub>k-1</sub></code> and
* <code>U<sub>k</sub></code> or <code>V<sub>k-1</sub></code> and
* <code>V<sub>k</sub></code>.
* @param mu The parameter <code>μ</code> of the elliptic curve.
* @param k The index of the second element of the Lucas Sequence to be
* returned.
* @param doV If set to true, computes <code>V<sub>k-1</sub></code> and
* <code>V<sub>k</sub></code>, otherwise <code>U<sub>k-1</sub></code> and
* <code>U<sub>k</sub></code>.
* @return An array with 2 elements, containing <code>U<sub>k-1</sub></code>
* and <code>U<sub>k</sub></code> or <code>V<sub>k-1</sub></code>
* and <code>V<sub>k</sub></code>.
*/
public static BigInteger[] getLucas(byte mu, int k, boolean doV)
{
if (!((mu == 1) || (mu == -1)))
{
throw new IllegalArgumentException("mu must be 1 or -1");
}
BigInteger u0;
BigInteger u1;
BigInteger u2;
if (doV)
{
u0 = ECConstants.TWO;
u1 = BigInteger.valueOf(mu);
}
else
{
u0 = ECConstants.ZERO;
u1 = ECConstants.ONE;
}
for (int i = 1; i < k; i++)
{
// u2 = mu*u1 - 2*u0;
BigInteger s = null;
if (mu == 1)
{
s = u1;
}
else
{
// mu == -1
s = u1.negate();
}
u2 = s.subtract(u0.shiftLeft(1));
u0 = u1;
u1 = u2;
// System.out.println(i + ": " + u2);
// System.out.println();
}
BigInteger[] retVal = {u0, u1};
return retVal;
}
示例13: getLucas
import java.math.BigInteger; //导入方法依赖的package包/类
/**
* Calculates the Lucas Sequence elements <code>U<sub>k-1</sub></code> and
* <code>U<sub>k</sub></code> or <code>V<sub>k-1</sub></code> and
* <code>V<sub>k</sub></code>.
* @param mu The parameter <code>μ</code> of the elliptic curve.
* @param k The index of the second element of the Lucas Sequence to be
* returned.
* @param doV If set to true, computes <code>V<sub>k-1</sub></code> and
* <code>V<sub>k</sub></code>, otherwise <code>U<sub>k-1</sub></code> and
* <code>U<sub>k</sub></code>.
* @return An array with 2 elements, containing <code>U<sub>k-1</sub></code>
* and <code>U<sub>k</sub></code> or <code>V<sub>k-1</sub></code>
* and <code>V<sub>k</sub></code>.
*/
public static BigInteger[] getLucas(byte mu, int k, boolean doV)
{
if (!((mu == 1) || (mu == -1)))
{
throw new IllegalArgumentException("mu must be 1 or -1");
}
BigInteger u0;
BigInteger u1;
BigInteger u2;
if (doV)
{
u0 = ECConstants.TWO;
u1 = BigInteger.valueOf(mu);
}
else
{
u0 = ECConstants.ZERO;
u1 = ECConstants.ONE;
}
for (int i = 1; i < k; i++)
{
// u2 = mu*u1 - 2*u0;
BigInteger s = null;
if (mu == 1)
{
s = u1;
}
else
{
// mu == -1
s = u1.negate();
}
u2 = s.subtract(u0.shiftLeft(1));
u0 = u1;
u1 = u2;
// System.out.println(i + ": " + u2);
// System.out.println();
}
BigInteger[] retVal = {u0, u1};
return retVal;
}
示例14: randomNonZeroBigInteger
import java.math.BigInteger; //导入方法依赖的package包/类
/**
* Equivalent to calling randomPositiveBigInteger(numBits) and then flipping
* the sign with 50% probability.
*/
static BigInteger randomNonZeroBigInteger(int numBits) {
BigInteger result = randomPositiveBigInteger(numBits);
return RANDOM_SOURCE.nextBoolean() ? result : result.negate();
}
示例15: neg
import java.math.BigInteger; //导入方法依赖的package包/类
@Override
public BigInteger neg(BigInteger arg) {
return arg.negate();
}