当前位置: 首页>>代码示例>>Java>>正文


Java BigInteger.modInverse方法代码示例

本文整理汇总了Java中java.math.BigInteger.modInverse方法的典型用法代码示例。如果您正苦于以下问题:Java BigInteger.modInverse方法的具体用法?Java BigInteger.modInverse怎么用?Java BigInteger.modInverse使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在java.math.BigInteger的用法示例。


在下文中一共展示了BigInteger.modInverse方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: getGenerator

import java.math.BigInteger; //导入方法依赖的package包/类
private BigInteger getGenerator(BigInteger q, BigInteger p, BigInteger pMinusOne) {
    log.info("creating a generator");
    BigInteger h = BigInteger.ONE;
    boolean safe = false;
    while (!safe) {
        h = randomGenerator.randomInZq(p);

        safe = modExp(h, TWO, p).compareTo(ONE) != 0
                && modExp(h, q, p).compareTo(ONE) != 0
                && pMinusOne.mod(h).compareTo(BigInteger.ZERO) != 0;

        BigInteger gInv = safe ? h.modInverse(p) : ONE;
        safe = safe && pMinusOne.mod(gInv).compareTo(BigInteger.ZERO) != 0;
    }
    log.info("generator created");
    return modExp(h, TWO, p);
}
 
开发者ID:republique-et-canton-de-geneve,项目名称:chvote-protocol-poc,代码行数:18,代码来源:Simulation.java

示例2: chineseRemainder

import java.math.BigInteger; //导入方法依赖的package包/类
/**
 * Computes the integer x that is expressed through the given primes and the
 * congruences with the chinese remainder theorem (CRT).
 * 
 * @param congruences
 *            the congruences c_i
 * @param primes
 *            the primes p_i
 * @return an integer x for that x % p_i == c_i
 */
private static BigInteger chineseRemainder(Vector congruences, Vector primes)
{
    BigInteger retval = ZERO;
    BigInteger all = ONE;
    for (int i = 0; i < primes.size(); i++)
    {
        all = all.multiply((BigInteger)primes.elementAt(i));
    }
    for (int i = 0; i < primes.size(); i++)
    {
        BigInteger a = (BigInteger)primes.elementAt(i);
        BigInteger b = all.divide(a);
        BigInteger b_ = b.modInverse(a);
        BigInteger tmp = b.multiply(b_);
        tmp = tmp.multiply((BigInteger)congruences.elementAt(i));
        retval = retval.add(tmp);
    }

    return retval.mod(all);
}
 
开发者ID:Appdome,项目名称:ipack,代码行数:31,代码来源:NaccacheSternEngine.java

示例3: generateS

import java.math.BigInteger; //导入方法依赖的package包/类
private BigInteger generateS(BigInteger x, BigInteger q,
        BigInteger r, BigInteger k) throws SignatureException {

    byte[] s2;
    try {
        s2 = md.digest();
    } catch (RuntimeException re) {
        // Only for RawDSA due to its 20-byte length restriction
        throw new SignatureException(re.getMessage());
    }
    // get the leftmost min(N, outLen) bits of the digest value
    int nBytes = q.bitLength()/8;
    if (nBytes < s2.length) {
        s2 = Arrays.copyOfRange(s2, 0, nBytes);
    }
    BigInteger z = new BigInteger(1, s2);
    BigInteger k1 = k.modInverse(q);

    return x.multiply(r).add(z).multiply(k1).mod(q);
}
 
开发者ID:SunburstApps,项目名称:OpenJSharp,代码行数:21,代码来源:DSA.java

示例4: verifySignature

import java.math.BigInteger; //导入方法依赖的package包/类
/**
 * return true if the value r and s represent a DSA signature for
 * the passed in message for standard DSA the message should be a
 * SHA-1 hash of the real message to be verified.
 */
public boolean verifySignature(
    byte[]      message,
    BigInteger  r,
    BigInteger  s)
{
    DSAParameters   params = key.getParameters();
    BigInteger      m = calculateE(params.getQ(), message);
    BigInteger      zero = BigInteger.valueOf(0);

    if (zero.compareTo(r) >= 0 || params.getQ().compareTo(r) <= 0)
    {
        return false;
    }

    if (zero.compareTo(s) >= 0 || params.getQ().compareTo(s) <= 0)
    {
        return false;
    }

    BigInteger  w = s.modInverse(params.getQ());

    BigInteger  u1 = m.multiply(w).mod(params.getQ());
    BigInteger  u2 = r.multiply(w).mod(params.getQ());

    u1 = params.getG().modPow(u1, params.getP());
    u2 = ((DSAPublicKeyParameters)key).getY().modPow(u2, params.getP());

    BigInteger  v = u1.multiply(u2).mod(params.getP()).mod(params.getQ());

    return v.equals(r);
}
 
开发者ID:Appdome,项目名称:ipack,代码行数:37,代码来源:DSASigner.java

示例5: engineCreateWitness

import java.math.BigInteger; //导入方法依赖的package包/类
@Override
protected byte[] engineCreateWitness(byte[] element) throws AccumulatorException {
    BigInteger hash;
    try {
        hash = fullDomainHash(publicKey.getKey(), element);
    } catch (NoSuchAlgorithmException e) {
        throw new AccumulatorException(e);
    }

    BigInteger exponent = hash.modInverse(privateKey.getKey());

    return accumulatorValue.modPow(exponent, publicKey.getKey()).toByteArray();
}
 
开发者ID:woefe,项目名称:xmlrss,代码行数:14,代码来源:PSAccumulator.java

示例6: verifySignature

import java.math.BigInteger; //导入方法依赖的package包/类
/**
 * return true if the value r and s represent a DSA signature for
 * the passed in message for standard DSA the message should be a
 * SHA-1 hash of the real message to be verified.
 */
@Override
public boolean verifySignature(
    byte[]      message,
    BigInteger  r,
    BigInteger  s)
{
    DSAParameters   params = key.getParameters();
    BigInteger      m = calculateE(params.getQ(), message);
    BigInteger      zero = BigInteger.valueOf(0);

    if (zero.compareTo(r) >= 0 || params.getQ().compareTo(r) <= 0)
    {
        return false;
    }

    if (zero.compareTo(s) >= 0 || params.getQ().compareTo(s) <= 0)
    {
        return false;
    }

    BigInteger  w = s.modInverse(params.getQ());

    BigInteger  u1 = m.multiply(w).mod(params.getQ());
    BigInteger  u2 = r.multiply(w).mod(params.getQ());

    u1 = params.getG().modPow(u1, params.getP());
    u2 = ((DSAPublicKeyParameters)key).getY().modPow(u2, params.getP());

    BigInteger  v = u1.multiply(u2).mod(params.getP()).mod(params.getQ());

    return v.equals(r);
}
 
开发者ID:BiglySoftware,项目名称:BiglyBT,代码行数:38,代码来源:DSASigner.java

示例7: modInv

import java.math.BigInteger; //导入方法依赖的package包/类
public static void modInv(int order) {
    int failCount = 0, successCount = 0, nonInvCount = 0;

    for (int i=0; i<SIZE; i++) {
        BigInteger x = fetchNumber(order);
        while(x.equals(BigInteger.ZERO))
            x = fetchNumber(order);
        BigInteger m = fetchNumber(order).abs();
        while(m.compareTo(BigInteger.ONE) != 1)
            m = fetchNumber(order).abs();

        try {
            BigInteger inv = x.modInverse(m);
            BigInteger prod = inv.multiply(x).remainder(m);

            if (prod.signum() == -1)
                prod = prod.add(m);

            if (prod.equals(BigInteger.ONE))
                successCount++;
            else
                failCount++;
        } catch(ArithmeticException e) {
            nonInvCount++;
        }
    }
    report("Modular Inverse for " + order + " bits", failCount);
}
 
开发者ID:lambdalab-mirror,项目名称:jdk8u-jdk,代码行数:29,代码来源:BigIntegerTest.java

示例8: processBlock

import java.math.BigInteger; //导入方法依赖的package包/类
/**
 * Process a single block using the basic RSA algorithm.
 *
 * @param in the input array.
 * @param inOff the offset into the input buffer where the data starts.
 * @param inLen the length of the data to be processed.
 * @return the result of the RSA process.
 * @exception DataLengthException the input block is too large.
 */
public byte[] processBlock(
    byte[]  in,
    int     inOff,
    int     inLen)
{
    if (key == null)
    {
        throw new IllegalStateException("RSA engine not initialised");
    }

    BigInteger input = core.convertInput(in, inOff, inLen);

    BigInteger result;
    if (key instanceof RSAPrivateCrtKeyParameters)
    {
        RSAPrivateCrtKeyParameters k = (RSAPrivateCrtKeyParameters)key;

        BigInteger e = k.getPublicExponent();
        if (e != null)   // can't do blinding without a public exponent
        {
            BigInteger m = k.getModulus();
            BigInteger r = BigIntegers.createRandomInRange(ONE, m.subtract(ONE), random);

            BigInteger blindedInput = r.modPow(e, m).multiply(input).mod(m);
            BigInteger blindedResult = core.processBlock(blindedInput);

            BigInteger rInv = r.modInverse(m);
            result = blindedResult.multiply(rInv).mod(m);
        }
        else
        {
            result = core.processBlock(input);
        }
    }
    else
    {
        result = core.processBlock(input);
    }

    return core.convertOutput(result);
}
 
开发者ID:Appdome,项目名称:ipack,代码行数:51,代码来源:RSABlindedEngine.java

示例9: verifySignature

import java.math.BigInteger; //导入方法依赖的package包/类
/**
 * return true if the value r and s represent a DSA signature for
 * the passed in message (for standard DSA the message should be
 * a SHA-1 hash of the real message to be verified).
 */
public boolean verifySignature(
    byte[]      message,
    BigInteger  r,
    BigInteger  s)
{
    BigInteger n = key.getParameters().getN();
    BigInteger e = calculateE(n, message);

    // r in the range [1,n-1]
    if (r.compareTo(ONE) < 0 || r.compareTo(n) >= 0)
    {
        return false;
    }

    // s in the range [1,n-1]
    if (s.compareTo(ONE) < 0 || s.compareTo(n) >= 0)
    {
        return false;
    }

    BigInteger c = s.modInverse(n);

    BigInteger u1 = e.multiply(c).mod(n);
    BigInteger u2 = r.multiply(c).mod(n);

    ECPoint G = key.getParameters().getG();
    ECPoint Q = ((ECPublicKeyParameters)key).getQ();

    ECPoint point = ECAlgorithms.sumOfTwoMultiplies(G, u1, Q, u2);

    // components must be bogus.
    if (point.isInfinity())
    {
        return false;
    }

    BigInteger v = point.getX().toBigInteger().mod(n);

    return v.equals(r);
}
 
开发者ID:Appdome,项目名称:ipack,代码行数:46,代码来源:ECDSASigner.java

示例10: verifySignature

import java.math.BigInteger; //导入方法依赖的package包/类
/**
 * return true if the value r and s represent a GOST3410 signature for
 * the passed in message (for standard GOST3410 the message should be
 * a GOST3411 hash of the real message to be verified).
 */
public boolean verifySignature(
    byte[]      message,
    BigInteger  r,
    BigInteger  s)
{
    byte[] mRev = new byte[message.length]; // conversion is little-endian
    for (int i = 0; i != mRev.length; i++)
    {
        mRev[i] = message[mRev.length - 1 - i];
    }
    
    BigInteger e = new BigInteger(1, mRev);
    BigInteger n = key.getParameters().getN();

    // r in the range [1,n-1]
    if (r.compareTo(ECConstants.ONE) < 0 || r.compareTo(n) >= 0)
    {
        return false;
    }

    // s in the range [1,n-1]
    if (s.compareTo(ECConstants.ONE) < 0 || s.compareTo(n) >= 0)
    {
        return false;
    }

    BigInteger v = e.modInverse(n);

    BigInteger z1 = s.multiply(v).mod(n);
    BigInteger z2 = (n.subtract(r)).multiply(v).mod(n);

    ECPoint G = key.getParameters().getG(); // P
    ECPoint Q = ((ECPublicKeyParameters)key).getQ();

    ECPoint point = ECAlgorithms.sumOfTwoMultiplies(G, z1, Q, z2);

    // components must be bogus.
    if (point.isInfinity())
    {
        return false;
    }

    BigInteger R = point.getX().toBigInteger().mod(n);

    return R.equals(r);
}
 
开发者ID:Appdome,项目名称:ipack,代码行数:52,代码来源:ECGOST3410Signer.java

示例11: generateKeyPair

import java.math.BigInteger; //导入方法依赖的package包/类
public KeyPair generateKeyPair() {
    // accommodate odd key sizes in case anybody wants to use them
    int lp = (keySize + 1) >> 1;
    int lq = keySize - lp;
    if (random == null) {
        random = JCAUtil.getSecureRandom();
    }
    BigInteger e = publicExponent;
    while (true) {
        // generate two random primes of size lp/lq
        BigInteger p = BigInteger.probablePrime(lp, random);
        BigInteger q, n;
        do {
            q = BigInteger.probablePrime(lq, random);
            // convention is for p > q
            if (p.compareTo(q) < 0) {
                BigInteger tmp = p;
                p = q;
                q = tmp;
            }
            // modulus n = p * q
            n = p.multiply(q);
            // even with correctly sized p and q, there is a chance that
            // n will be one bit short. re-generate the smaller prime if so
        } while (n.bitLength() < keySize);

        // phi = (p - 1) * (q - 1) must be relative prime to e
        // otherwise RSA just won't work ;-)
        BigInteger p1 = p.subtract(BigInteger.ONE);
        BigInteger q1 = q.subtract(BigInteger.ONE);
        BigInteger phi = p1.multiply(q1);
        // generate new p and q until they work. typically
        // the first try will succeed when using F4
        if (e.gcd(phi).equals(BigInteger.ONE) == false) {
            continue;
        }

        // private exponent d is the inverse of e mod phi
        BigInteger d = e.modInverse(phi);

        // 1st prime exponent pe = d mod (p - 1)
        BigInteger pe = d.mod(p1);
        // 2nd prime exponent qe = d mod (q - 1)
        BigInteger qe = d.mod(q1);

        // crt coefficient coeff is the inverse of q mod p
        BigInteger coeff = q.modInverse(p);

        try {
            PublicKey publicKey = new RSAPublicKeyImpl(n, e);
            PrivateKey privateKey =
                    new RSAPrivateCrtKeyImpl(n, e, d, p, q, pe, qe, coeff);
            return new KeyPair(publicKey, privateKey);
        } catch (InvalidKeyException exc) {
            // invalid key exception only thrown for keys < 512 bit,
            // will not happen here
            throw new RuntimeException(exc);
        }
    }
}
 
开发者ID:SunburstApps,项目名称:OpenJSharp,代码行数:61,代码来源:RSAKeyPairGenerator.java

示例12: generateW

import java.math.BigInteger; //导入方法依赖的package包/类
private BigInteger generateW(BigInteger p, BigInteger q,
                     BigInteger g, BigInteger s) {
    return s.modInverse(q);
}
 
开发者ID:SunburstApps,项目名称:OpenJSharp,代码行数:5,代码来源:DSA.java

示例13: verifySignature

import java.math.BigInteger; //导入方法依赖的package包/类
public static boolean verifySignature(byte[] message, DSASignature ds, DSAPublicKey dpk) throws IOException {
    /* Inspired by Bouncycastle's DSASigner class */

    SHA1 md = new SHA1();
    md.update(message);
    byte[] sha_message = new byte[md.getDigestLength()];
    md.digest(sha_message);

    BigInteger m = new BigInteger(1, sha_message);

    BigInteger r = ds.getR();
    BigInteger s = ds.getS();

    BigInteger g = dpk.getG();
    BigInteger p = dpk.getP();
    BigInteger q = dpk.getQ();
    BigInteger y = dpk.getY();

    BigInteger zero = BigInteger.ZERO;

    if (log.isEnabled()) {
        log.log(60, "ssh-dss signature: m: " + m.toString(16));
        log.log(60, "ssh-dss signature: r: " + r.toString(16));
        log.log(60, "ssh-dss signature: s: " + s.toString(16));
        log.log(60, "ssh-dss signature: g: " + g.toString(16));
        log.log(60, "ssh-dss signature: p: " + p.toString(16));
        log.log(60, "ssh-dss signature: q: " + q.toString(16));
        log.log(60, "ssh-dss signature: y: " + y.toString(16));
    }

    if (zero.compareTo(r) >= 0 || q.compareTo(r) <= 0) {
        log.log(20, "ssh-dss signature: zero.compareTo(r) >= 0 || q.compareTo(r) <= 0");
        return false;
    }

    if (zero.compareTo(s) >= 0 || q.compareTo(s) <= 0) {
        log.log(20, "ssh-dss signature: zero.compareTo(s) >= 0 || q.compareTo(s) <= 0");
        return false;
    }

    BigInteger w = s.modInverse(q);

    BigInteger u1 = m.multiply(w).mod(q);
    BigInteger u2 = r.multiply(w).mod(q);

    u1 = g.modPow(u1, p);
    u2 = y.modPow(u2, p);

    BigInteger v = u1.multiply(u2).mod(p).mod(q);

    return v.equals(r);
}
 
开发者ID:fast-data-transfer,项目名称:fdt,代码行数:53,代码来源:DSASHA1Verify.java

示例14: calcPrivateExp

import java.math.BigInteger; //导入方法依赖的package包/类
private static void calcPrivateExp(BigInteger p, BigInteger q, BigInteger exp) {

		BigInteger mod = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE));
		BigInteger d = exp.modInverse(mod);
		System.out.println(p + " " + q + " " + d);

	}
 
开发者ID:cybernova,项目名称:RSAbreaker,代码行数:8,代码来源:RSAbreaker.java


注:本文中的java.math.BigInteger.modInverse方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。