当前位置: 首页>>代码示例>>Java>>正文


Java LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL属性代码示例

本文整理汇总了Java中org.apache.commons.math3.exception.util.LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL属性的典型用法代码示例。如果您正苦于以下问题:Java LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL属性的具体用法?Java LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL怎么用?Java LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在org.apache.commons.math3.exception.util.LocalizedFormats的用法示例。


在下文中一共展示了LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL属性的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: gTest

/**
 * Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit
 * evaluating the null hypothesis that the observed counts conform to the
 * frequency distribution described by the expected counts, with
 * significance level {@code alpha}. Returns true iff the null
 * hypothesis can be rejected with {@code 100 * (1 - alpha)} percent confidence.
 *
 * <p><strong>Example:</strong><br> To test the hypothesis that
 * {@code observed} follows {@code expected} at the 99% level,
 * use </p><p>
 * {@code gTest(expected, observed, 0.01)}</p>
 *
 * <p>Returns true iff {@link #gTest(double[], long[])
 *  gTestGoodnessOfFitPValue(expected, observed)} < alpha</p>
 *
 * <p><strong>Preconditions</strong>: <ul>
 * <li>Expected counts must all be positive. </li>
 * <li>Observed counts must all be &ge; 0. </li>
 * <li>The observed and expected arrays must have the same length and their
 * common length must be at least 2.
 * <li> {@code 0 < alpha < 0.5} </li></ul></p>
 *
 * <p>If any of the preconditions are not met, a
 * {@code MathIllegalArgumentException} is thrown.</p>
 *
 * <p><strong>Note:</strong>This implementation rescales the
 * {@code expected} array if necessary to ensure that the sum of the
 * expected and observed counts are equal.</p>
 *
 * @param observed array of observed frequency counts
 * @param expected array of expected frequency counts
 * @param alpha significance level of the test
 * @return true iff null hypothesis can be rejected with confidence 1 -
 * alpha
 * @throws NotPositiveException if {@code observed} has negative entries
 * @throws NotStrictlyPositiveException if {@code expected} has entries that
 * are not strictly positive
 * @throws DimensionMismatchException if the array lengths do not match or
 * are less than 2.
 * @throws MaxCountExceededException if an error occurs computing the
 * p-value.
 * @throws OutOfRangeException if alpha is not strictly greater than zero
 * and less than or equal to 0.5
 */
public boolean gTest(final double[] expected, final long[] observed,
        final double alpha)
        throws NotPositiveException, NotStrictlyPositiveException,
        DimensionMismatchException, OutOfRangeException, MaxCountExceededException {

    if ((alpha <= 0) || (alpha > 0.5)) {
        throw new OutOfRangeException(LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL,
                alpha, 0, 0.5);
    }
    return gTest(expected, observed) < alpha;
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:55,代码来源:GTest.java

示例2: gTestDataSetsComparison

/**
 * <p>Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned
 * data sets. The test evaluates the null hypothesis that the two lists
 * of observed counts conform to the same frequency distribution, with
 * significance level {@code alpha}. Returns true iff the null
 * hypothesis can be rejected  with 100 * (1 - alpha) percent confidence.
 * </p>
 * <p>See {@link #gDataSetsComparison(long[], long[])} for details
 * on the formula used to compute the G (LLR) statistic used in the test and
 * {@link #gTest(double[], long[])} for information on how
 * the observed significance level is computed. The degrees of of freedom used
 * to perform the test is one less than the common length of the input observed
 * count arrays. </p>
 *
 * <strong>Preconditions</strong>: <ul>
 * <li>Observed counts must be non-negative. </li>
 * <li>Observed counts for a specific bin must not both be zero. </li>
 * <li>Observed counts for a specific sample must not all be 0. </li>
 * <li>The arrays {@code observed1} and {@code observed2} must
 * have the same length and their common length must be at least 2. </li>
 * <li>{@code 0 < alpha < 0.5} </li></ul></p>
 *
 * <p>If any of the preconditions are not met, a
 * {@code MathIllegalArgumentException} is thrown.</p>
 *
 * @param observed1 array of observed frequency counts of the first data set
 * @param observed2 array of observed frequency counts of the second data
 * set
 * @param alpha significance level of the test
 * @return true iff null hypothesis can be rejected with confidence 1 -
 * alpha
 * @throws DimensionMismatchException the the length of the arrays does not
 * match
 * @throws NotPositiveException if any of the entries in {@code observed1} or
 * {@code observed2} are negative
 * @throws ZeroException if either all counts of {@code observed1} or
 * {@code observed2} are zero, or if the count at some index is
 * zero for both arrays
 * @throws OutOfRangeException if {@code alpha} is not in the range
 * (0, 0.5]
 * @throws MaxCountExceededException if an error occurs performing the test
 */
public boolean gTestDataSetsComparison(
        final long[] observed1,
        final long[] observed2,
        final double alpha)
        throws DimensionMismatchException, NotPositiveException,
        ZeroException, OutOfRangeException, MaxCountExceededException {

    if (alpha <= 0 || alpha > 0.5) {
        throw new OutOfRangeException(
                LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL, alpha, 0, 0.5);
    }
    return gTestDataSetsComparison(observed1, observed2) < alpha;
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:55,代码来源:GTest.java

示例3: chiSquareTest

/**
 * Performs a <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm">
 * Chi-square goodness of fit test</a> evaluating the null hypothesis that the
 * observed counts conform to the frequency distribution described by the expected
 * counts, with significance level <code>alpha</code>.  Returns true iff the null
 * hypothesis can be rejected with 100 * (1 - alpha) percent confidence.
 * <p>
 * <strong>Example:</strong><br>
 * To test the hypothesis that <code>observed</code> follows
 * <code>expected</code> at the 99% level, use </p><p>
 * <code>chiSquareTest(expected, observed, 0.01) </code></p>
 * <p>
 * <strong>Preconditions</strong>: <ul>
 * <li>Expected counts must all be positive.
 * </li>
 * <li>Observed counts must all be &ge; 0.
 * </li>
 * <li>The observed and expected arrays must have the same length and
 * their common length must be at least 2.
 * <li> <code> 0 &lt; alpha &lt; 0.5 </code>
 * </li></ul></p><p>
 * If any of the preconditions are not met, an
 * <code>IllegalArgumentException</code> is thrown.</p>
 * <p><strong>Note: </strong>This implementation rescales the
 * <code>expected</code> array if necessary to ensure that the sum of the
 * expected and observed counts are equal.</p>
 *
 * @param observed array of observed frequency counts
 * @param expected array of expected frequency counts
 * @param alpha significance level of the test
 * @return true iff null hypothesis can be rejected with confidence
 * 1 - alpha
 * @throws NotPositiveException if <code>observed</code> has negative entries
 * @throws NotStrictlyPositiveException if <code>expected</code> has entries that are
 * not strictly positive
 * @throws DimensionMismatchException if the arrays length is less than 2
 * @throws OutOfRangeException if <code>alpha</code> is not in the range (0, 0.5]
 * @throws MaxCountExceededException if an error occurs computing the p-value
 */
public boolean chiSquareTest(final double[] expected, final long[] observed,
                             final double alpha)
    throws NotPositiveException, NotStrictlyPositiveException,
    DimensionMismatchException, OutOfRangeException, MaxCountExceededException {

    if ((alpha <= 0) || (alpha > 0.5)) {
        throw new OutOfRangeException(LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL,
                                      alpha, 0, 0.5);
    }
    return chiSquareTest(expected, observed) < alpha;

}
 
开发者ID:biocompibens,项目名称:SME,代码行数:51,代码来源:ChiSquareTest.java

示例4: chiSquareTestDataSetsComparison

/**
 * <p>Performs a Chi-Square two sample test comparing two binned data
 * sets. The test evaluates the null hypothesis that the two lists of
 * observed counts conform to the same frequency distribution, with
 * significance level <code>alpha</code>.  Returns true iff the null
 * hypothesis can be rejected with 100 * (1 - alpha) percent confidence.
 * </p>
 * <p>See {@link #chiSquareDataSetsComparison(long[], long[])} for
 * details on the formula used to compute the Chisquare statistic used
 * in the test. The degrees of of freedom used to perform the test is
 * one less than the common length of the input observed count arrays.
 * </p>
 * <strong>Preconditions</strong>: <ul>
 * <li>Observed counts must be non-negative.
 * </li>
 * <li>Observed counts for a specific bin must not both be zero.
 * </li>
 * <li>Observed counts for a specific sample must not all be 0.
 * </li>
 * <li>The arrays <code>observed1</code> and <code>observed2</code> must
 * have the same length and their common length must be at least 2.
 * </li>
 * <li> <code> 0 < alpha < 0.5 </code>
 * </li></ul><p>
 * If any of the preconditions are not met, an
 * <code>IllegalArgumentException</code> is thrown.</p>
 *
 * @param observed1 array of observed frequency counts of the first data set
 * @param observed2 array of observed frequency counts of the second data set
 * @param alpha significance level of the test
 * @return true iff null hypothesis can be rejected with confidence
 * 1 - alpha
 * @throws DimensionMismatchException the the length of the arrays does not match
 * @throws NotPositiveException if any entries in <code>observed1</code> or
 * <code>observed2</code> are negative
 * @throws ZeroException if either all counts of <code>observed1</code> or
 * <code>observed2</code> are zero, or if the count at the same index is zero
 * for both arrays
 * @throws OutOfRangeException if <code>alpha</code> is not in the range (0, 0.5]
 * @throws MaxCountExceededException if an error occurs performing the test
 * @since 1.2
 */
public boolean chiSquareTestDataSetsComparison(final long[] observed1,
                                               final long[] observed2,
                                               final double alpha)
    throws DimensionMismatchException, NotPositiveException,
    ZeroException, OutOfRangeException, MaxCountExceededException {

    if (alpha <= 0 ||
        alpha > 0.5) {
        throw new OutOfRangeException(LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL,
                                      alpha, 0, 0.5);
    }
    return chiSquareTestDataSetsComparison(observed1, observed2) < alpha;

}
 
开发者ID:biocompibens,项目名称:SME,代码行数:56,代码来源:ChiSquareTest.java

示例5: kolmogorovSmirnovTest

/**
 * Performs a <a href="http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test"> Kolmogorov-Smirnov
 * test</a> evaluating the null hypothesis that {@code data} conforms to {@code distribution}.
 *
 * @param distribution reference distribution
 * @param data sample being being evaluated
 * @param alpha significance level of the test
 * @return true iff the null hypothesis that {@code data} is a sample from {@code distribution}
 *         can be rejected with confidence 1 - {@code alpha}
 * @throws InsufficientDataException if {@code data} does not have length at least 2
 * @throws NullArgumentException if {@code data} is null
 */
public boolean kolmogorovSmirnovTest(RealDistribution distribution, double[] data, double alpha) {
    if ((alpha <= 0) || (alpha > 0.5)) {
        throw new OutOfRangeException(LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL, alpha, 0, 0.5);
    }
    return kolmogorovSmirnovTest(distribution, data) < alpha;
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:18,代码来源:KolmogorovSmirnovTest.java

示例6: anovaTest

/**
 * Performs an ANOVA test, evaluating the null hypothesis that there
 * is no difference among the means of the data categories.
 *
 * <p><strong>Preconditions</strong>: <ul>
 * <li>The categoryData <code>Collection</code> must contain
 * <code>double[]</code> arrays.</li>
 * <li> There must be at least two <code>double[]</code> arrays in the
 * <code>categoryData</code> collection and each of these arrays must
 * contain at least two values.</li>
 * <li>alpha must be strictly greater than 0 and less than or equal to 0.5.
 * </li></ul></p><p>
 * This implementation uses the
 * {@link org.apache.commons.math3.distribution.FDistribution
 * commons-math F Distribution implementation} to estimate the exact
 * p-value, using the formula<pre>
 *   p = 1 - cumulativeProbability(F)</pre>
 * where <code>F</code> is the F value and <code>cumulativeProbability</code>
 * is the commons-math implementation of the F distribution.</p>
 * <p>True is returned iff the estimated p-value is less than alpha.</p>
 *
 * @param categoryData <code>Collection</code> of <code>double[]</code>
 * arrays each containing data for one category
 * @param alpha significance level of the test
 * @return true if the null hypothesis can be rejected with
 * confidence 1 - alpha
 * @throws NullArgumentException if <code>categoryData</code> is <code>null</code>
 * @throws DimensionMismatchException if the length of the <code>categoryData</code>
 * array is less than 2 or a contained <code>double[]</code> array does not have
 * at least two values
 * @throws OutOfRangeException if <code>alpha</code> is not in the range (0, 0.5]
 * @throws ConvergenceException if the p-value can not be computed due to a convergence error
 * @throws MaxCountExceededException if the maximum number of iterations is exceeded
 */
public boolean anovaTest(final Collection<double[]> categoryData,
                         final double alpha)
    throws NullArgumentException, DimensionMismatchException,
    OutOfRangeException, ConvergenceException, MaxCountExceededException {

    if ((alpha <= 0) || (alpha > 0.5)) {
        throw new OutOfRangeException(
                LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL,
                alpha, 0, 0.5);
    }
    return anovaPValue(categoryData) < alpha;

}
 
开发者ID:biocompibens,项目名称:SME,代码行数:47,代码来源:OneWayAnova.java


注:本文中的org.apache.commons.math3.exception.util.LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。