本文整理汇总了Java中org.apache.commons.math3.exception.util.LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS属性的典型用法代码示例。如果您正苦于以下问题:Java LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS属性的具体用法?Java LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS怎么用?Java LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类org.apache.commons.math3.exception.util.LocalizedFormats
的用法示例。
在下文中一共展示了LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS属性的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: getPointFromLargestVarianceCluster
/**
* Get a random point from the {@link Cluster} with the largest distance variance.
*
* @param clusters the {@link Cluster}s to search
* @return a random point from the selected cluster
* @throws ConvergenceException if clusters are all empty
*/
private T getPointFromLargestVarianceCluster(final Collection<CentroidCluster<T>> clusters)
throws ConvergenceException {
double maxVariance = Double.NEGATIVE_INFINITY;
Cluster<T> selected = null;
for (final CentroidCluster<T> cluster : clusters) {
if (!cluster.getPoints().isEmpty()) {
// compute the distance variance of the current cluster
final Clusterable center = cluster.getCenter();
final Variance stat = new Variance();
for (final T point : cluster.getPoints()) {
stat.increment(distance(point, center));
}
final double variance = stat.getResult();
// select the cluster with the largest variance
if (variance > maxVariance) {
maxVariance = variance;
selected = cluster;
}
}
}
// did we find at least one non-empty cluster ?
if (selected == null) {
throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
}
// extract a random point from the cluster
final List<T> selectedPoints = selected.getPoints();
return selectedPoints.remove(random.nextInt(selectedPoints.size()));
}
示例2: getPointFromLargestNumberCluster
/**
* Get a random point from the {@link Cluster} with the largest number of points
*
* @param clusters the {@link Cluster}s to search
* @return a random point from the selected cluster
* @throws ConvergenceException if clusters are all empty
*/
private T getPointFromLargestNumberCluster(final Collection<? extends Cluster<T>> clusters)
throws ConvergenceException {
int maxNumber = 0;
Cluster<T> selected = null;
for (final Cluster<T> cluster : clusters) {
// get the number of points of the current cluster
final int number = cluster.getPoints().size();
// select the cluster with the largest number of points
if (number > maxNumber) {
maxNumber = number;
selected = cluster;
}
}
// did we find at least one non-empty cluster ?
if (selected == null) {
throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
}
// extract a random point from the cluster
final List<T> selectedPoints = selected.getPoints();
return selectedPoints.remove(random.nextInt(selectedPoints.size()));
}
示例3: getFarthestPoint
/**
* Get the point farthest to its cluster center
*
* @param clusters the {@link Cluster}s to search
* @return point farthest to its cluster center
* @throws ConvergenceException if clusters are all empty
*/
private T getFarthestPoint(final Collection<CentroidCluster<T>> clusters) throws ConvergenceException {
double maxDistance = Double.NEGATIVE_INFINITY;
Cluster<T> selectedCluster = null;
int selectedPoint = -1;
for (final CentroidCluster<T> cluster : clusters) {
// get the farthest point
final Clusterable center = cluster.getCenter();
final List<T> points = cluster.getPoints();
for (int i = 0; i < points.size(); ++i) {
final double distance = distance(points.get(i), center);
if (distance > maxDistance) {
maxDistance = distance;
selectedCluster = cluster;
selectedPoint = i;
}
}
}
// did we find at least one non-empty cluster ?
if (selectedCluster == null) {
throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
}
return selectedCluster.getPoints().remove(selectedPoint);
}
示例4: getPointFromLargestVarianceCluster
/**
* Get a random point from the {@link Cluster} with the largest distance variance.
*
* @param clusters the {@link Cluster}s to search
* @return a random point from the selected cluster
* @throws ConvergenceException if clusters are all empty
*/
private T getPointFromLargestVarianceCluster(final Collection<Cluster<T>> clusters)
throws ConvergenceException {
double maxVariance = Double.NEGATIVE_INFINITY;
Cluster<T> selected = null;
for (final Cluster<T> cluster : clusters) {
if (!cluster.getPoints().isEmpty()) {
// compute the distance variance of the current cluster
final T center = cluster.getCenter();
final Variance stat = new Variance();
for (final T point : cluster.getPoints()) {
stat.increment(point.distanceFrom(center));
}
final double variance = stat.getResult();
// select the cluster with the largest variance
if (variance > maxVariance) {
maxVariance = variance;
selected = cluster;
}
}
}
// did we find at least one non-empty cluster ?
if (selected == null) {
throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
}
// extract a random point from the cluster
final List<T> selectedPoints = selected.getPoints();
return selectedPoints.remove(random.nextInt(selectedPoints.size()));
}
示例5: getPointFromLargestNumberCluster
/**
* Get a random point from the {@link Cluster} with the largest number of points
*
* @param clusters the {@link Cluster}s to search
* @return a random point from the selected cluster
* @throws ConvergenceException if clusters are all empty
*/
private T getPointFromLargestNumberCluster(final Collection<Cluster<T>> clusters) throws ConvergenceException {
int maxNumber = 0;
Cluster<T> selected = null;
for (final Cluster<T> cluster : clusters) {
// get the number of points of the current cluster
final int number = cluster.getPoints().size();
// select the cluster with the largest number of points
if (number > maxNumber) {
maxNumber = number;
selected = cluster;
}
}
// did we find at least one non-empty cluster ?
if (selected == null) {
throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
}
// extract a random point from the cluster
final List<T> selectedPoints = selected.getPoints();
return selectedPoints.remove(random.nextInt(selectedPoints.size()));
}
示例6: getFarthestPoint
/**
* Get the point farthest to its cluster center
*
* @param clusters the {@link Cluster}s to search
* @return point farthest to its cluster center
* @throws ConvergenceException if clusters are all empty
*/
private T getFarthestPoint(final Collection<Cluster<T>> clusters) throws ConvergenceException {
double maxDistance = Double.NEGATIVE_INFINITY;
Cluster<T> selectedCluster = null;
int selectedPoint = -1;
for (final Cluster<T> cluster : clusters) {
// get the farthest point
final T center = cluster.getCenter();
final List<T> points = cluster.getPoints();
for (int i = 0; i < points.size(); ++i) {
final double distance = points.get(i).distanceFrom(center);
if (distance > maxDistance) {
maxDistance = distance;
selectedCluster = cluster;
selectedPoint = i;
}
}
}
// did we find at least one non-empty cluster ?
if (selectedCluster == null) {
throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
}
return selectedCluster.getPoints().remove(selectedPoint);
}