本文整理汇总了C#中System.Point.DistanceTo方法的典型用法代码示例。如果您正苦于以下问题:C# Point.DistanceTo方法的具体用法?C# Point.DistanceTo怎么用?C# Point.DistanceTo使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Point
的用法示例。
在下文中一共展示了Point.DistanceTo方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: CreateShip
private static Ship CreateShip(Point startPoint, Point endPoint)
{
var list = new List<Point> { startPoint };
if (startPoint != endPoint)
{
list.Add(endPoint);
}
list.Sort();
if (list.Count > 1 && startPoint.DistanceTo(endPoint) > 2)
{
if (list[0].X == list[1].X)
{
// vertical
for (var y = (byte)(list[0].Y + 1); y < list[1].Y; ++y)
{
list.Add(new Point(list[0].X, y, true, false));
}
}
else
{
// Horiz
for (var x = (char)(list[0].X + 1); x < list[1].X; ++x)
{
list.Add(new Point(x, list[0].Y, true, false));
}
}
}
list.Sort();
return new Ship(list.ToArray());
}
示例2: DistanceTest
public void DistanceTest()
{
Point p1 = new Point(0, 0);
Point p2 = new Point(1, 1);
Assert.AreEqual<double>(p1.DistanceTo(p2), 2, "Distance unexpected");
Assert.AreEqual<double>(p1.DistanceTo(p2), p2.DistanceTo(p1), "Distance not equal in both directions");
bool threwException = false;
try
{
p1.DistanceTo(null);
}
catch (ArgumentNullException)
{
threwException = true;
}
Assert.IsTrue(threwException, "Did not throw ArgumentNullException");
}
示例3: CreateEdgesFromEdges
bool CreateEdgesFromEdges(Point p)
{
// Point p is near an edge, and we build a perpendicular edge from p to that edge,
// or a new edge from p to an end of the edge.
bool created = false;
int i, N = edges.Count;
Edge e;
for (i = 0; i < N; i++)
{
e = edges[i];
double dist = p.DistanceTo(e);
// If point p is close to e, but not on e...
if (dist < Epsilon && !Util.IsZero(dist))
{
Point intersection = e.IntersectWithPerpendicular(p);
if (e.Contains(intersection))
{
edges.Add(new Edge(p, intersection));
created = true;
}
else
// Or just create with nearest edge end, if possible
if (p.DistanceTo(e.P1) < Epsilon)
{
edges.Add(new Edge(p, e.P1));
created = true;
}
else
if (p.DistanceTo(e.P2) < Epsilon)
{
edges.Add(new Edge(p, e.P2));
created = true;
}
}
}
return created;
}
示例4: MergePointInEdge
bool MergePointInEdge(Point p)
{
// Checks if this point belongs to an already existing edge.
foreach (Edge e in edges)
if (p.DistanceTo(e) < Epsilon && p.Between(e.P1, e.P2))
return true;
return false;
}
示例5: ExtendEdges
bool ExtendEdges(Point p)
{
// Point p is on director vector of edge e, and we extend e to include p.
List<Edge> extended = new List<Edge>();
foreach (Edge e in edges)
if (p.OnLine(e.P1, e.P2) && p != e.P1 && p != e.P2)
{
int where = p.Where(e.P1, e.P2);
if (where == 1 && p.DistanceTo(e.P1) < Epsilon)
{
e.P1 = p;
extended.Add(e);
}
if (where == 2 && p.DistanceTo(e.P2) < Epsilon)
{
e.P2 = p;
extended.Add(e);
}
}
if (extended.Count == 0) return false;
// We try to link 2 extended edges to p to form a single edge.
Point P1, P2;
for (int i = 0; i < extended.Count; i++)
if (extended[i] != null)
{
if (extended[i].P1 == p) P1 = extended[i].P2;
else P1 = extended[i].P1;
for (int j = i + 1; j < extended.Count; j++)
if (extended[j] != null)
{
if (extended[j].P1 == p) P2 = extended[j].P2;
else P2 = extended[j].P1;
if (p.OnLine(P1, P2))
{
// This works because extended[i] is a pointer!
extended[i].P1 = P1;
extended[i].P2 = P2;
edges.Remove(extended[j]);
extended[j] = null;
break;
}
}
}
return true;
}
示例6: CreateEdgesFromPoints
bool CreateEdgesFromPoints(Point p)
{
// Finds >= MinPointsInLine points (including point p) that are ~ colinear and
// creates an edge from them. Can build multiple edges.
bool created = false;
Dictionary<double, List<int>> dex = new Dictionary<double, List<int>>();
for (int i = 0; i < points.Count; i++)
if (p.DistanceTo(points[i]) < MinPointsInLine * Epsilon)
{
double angle;
if (Util.IsEqual(p.X, points[i].X))
angle = double.NaN;
else
{
angle = (p.Y - points[i].Y) / (p.X - points[i].X);
angle = Math.Truncate(angle / EpsilonAngle) * EpsilonAngle;
}
if (!dex.ContainsKey(angle))
dex[angle] = new List<int>(2 * MinPointsInLine);
dex[angle].Add(i);
}
foreach (KeyValuePair<double, List<int>> item in dex)
if (item.Value.Count >= MinPointsInLine)
{
// Merge the points from item.Value into a single edge.
List<int> indexes = item.Value;
Point min, max;
min = points[indexes[0]];
max = points[indexes[0]];
for (int i = 1; i < indexes.Count; i++)
{
min = Point.Min(min, points[indexes[i]]);
max = Point.Max(max, points[indexes[i]]);
}
// Remove the points.
indexes.Sort();
for (int i = indexes.Count - 1; i >= 0; i--)
points.RemoveAt(indexes[i]);
// Add the new edge.
Edge newEdge = new Edge(min, max);
if (!MergeEdge(newEdge))
edges.Add(newEdge);
created = true;
}
return created;
}
示例7: DistanceToPoint
/// <summary>
/// Calculate Euclidean distance between a point and a finite line segment.
/// </summary>
///
/// <param name="point">The point to calculate the distance to.</param>
///
/// <returns>Returns the Euclidean distance between this line segment and the specified point. Unlike
/// <see cref="Line.DistanceToPoint"/>, this returns the distance from the finite segment. (0,0) is 5 units
/// from the segment (0,5)-(0,8), but is 0 units from the line through those points.</returns>
///
public float DistanceToPoint(Point point)
{
float segmentDistance;
switch (LocateProjection(point))
{
case ProjectionLocation.RayA:
segmentDistance = point.DistanceTo(start);
break;
case ProjectionLocation.RayB:
segmentDistance = point.DistanceTo(end);
break;
default:
segmentDistance = line.DistanceToPoint(point);
break;
};
return segmentDistance;
}
示例8: IntersectCircles
public Point IntersectCircles(Point c1, double r1, Point c2, double r2, Point c3, double r3)
{
// To compute the intersection of the 3 circle, we intersect two of them, get 2
// solutions, and see which one is on the third circle.
// Step 1: Translate all circle centers so that c1 = (0, 0).
c2 = c2 - c1;
c3 = c3 - c1;
// Step 2: Rotate all around (0, 0) so that c2 is now on Ox axis.
double O = Math.Atan2(c2.Y, c2.X);
c2 = c2.Rotate(-O);
c3 = c3.Rotate(-O);
// Step 3: Intersect circles (0, 0, r1) with (c2.X, 0, r2)
Point p1 = new Point(), p2 = new Point(), sol;
p1.X = p2.X = (r1 * r1 - r2 * r2 + c2.X * c2.X) / (2 * c2.X);
// sqrt( negative zero ) = NaN
if (r1 > p1.X) p1.Y = Math.Sqrt(r1 * r1 - p1.X * p1.X);
else p1.Y = 0;
p2.Y = - p1.Y;
if (Util.IsEqual(p2.DistanceTo(c3), r3))
sol = p2;
else
sol = p1;
// Unapply step 2
sol = sol.Rotate(O);
// Unapply step 1
sol = sol + c1;
return sol;
}
示例9: Query
public override void Query(ref Point point, out Sample.Location sample)
{
sample.Distance = float.MaxValue;
FullLine selectedLine = _Lines[0];
if(_Lines.Length > 1)
{
foreach(FullLine line in _Lines)
{
Point point1 = line.Point1;
Point point2 = line.Point2;
float newDistance = point.SquaredDistanceTo(point1, point2);
if(newDistance < sample.Distance)
{
sample.Distance = newDistance;
selectedLine = line;
}
}
}
sample.Distance = point.DistanceTo(
selectedLine.Point1, selectedLine.Point2, out sample.Intersection);
}