当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.bitCount方法代码示例

本文整理汇总了C#中Granados.BigInteger.bitCount方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.bitCount方法的具体用法?C# BigInteger.bitCount怎么用?C# BigInteger.bitCount使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Granados.BigInteger的用法示例。


在下文中一共展示了BigInteger.bitCount方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: LucasSequenceHelper

        //***********************************************************************
        // Performs the calculation of the kth term in the Lucas Sequence.
        // For details of the algorithm, see reference [9].
        //
        // k must be odd.  i.e LSB == 1
        //***********************************************************************

        private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
            BigInteger k, BigInteger n,
            BigInteger constant, int s) {
            BigInteger[] result = new BigInteger[3];

            if ((k.data[0] & 0x00000001) == 0)
                throw (new ArgumentException("Argument k must be odd."));

            int numbits = k.bitCount();
            uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);

            // v = v0, v1 = v1, u1 = u1, Q_k = Q^0

            BigInteger v = 2 % n, Q_k = 1 % n,
                v1 = P % n, u1 = Q_k;
            bool flag = true;

            for (int i = k.dataLength - 1; i >= 0; i--) {     // iterate on the binary expansion of k
                //Console.WriteLine("round");
                while (mask != 0) {
                    if (i == 0 && mask == 0x00000001)        // last bit
                        break;

                    if ((k.data[i] & mask) != 0) {             // bit is set
                        // index doubling with addition

                        u1 = (u1 * v1) % n;

                        v = ((v * v1) - (P * Q_k)) % n;
                        v1 = n.BarrettReduction(v1 * v1, n, constant);
                        v1 = (v1 - ((Q_k * Q) << 1)) % n;

                        if (flag)
                            flag = false;
                        else
                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

                        Q_k = (Q_k * Q) % n;
                    }
                    else {
                        // index doubling
                        u1 = ((u1 * v) - Q_k) % n;

                        v1 = ((v * v1) - (P * Q_k)) % n;
                        v = n.BarrettReduction(v * v, n, constant);
                        v = (v - (Q_k << 1)) % n;

                        if (flag) {
                            Q_k = Q % n;
                            flag = false;
                        }
                        else
                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                    }

                    mask >>= 1;
                }
                mask = 0x80000000;
            }

            // at this point u1 = u(n+1) and v = v(n)
            // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)

            u1 = ((u1 * v) - Q_k) % n;
            v = ((v * v1) - (P * Q_k)) % n;
            if (flag)
                flag = false;
            else
                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

            Q_k = (Q_k * Q) % n;


            for (int i = 0; i < s; i++) {
                // index doubling
                u1 = (u1 * v) % n;
                v = ((v * v) - (Q_k << 1)) % n;

                if (flag) {
                    Q_k = Q % n;
                    flag = false;
                }
                else
                    Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
            }

            result[0] = u1;
            result[1] = v;
            result[2] = Q_k;

            return result;
        }
开发者ID:Ricordanza,项目名称:poderosa,代码行数:99,代码来源:BigInteger.cs

示例2: modPow

        //***********************************************************************
        // Modulo Exponentiation
        //***********************************************************************

        public BigInteger modPow(BigInteger exp, BigInteger n) {
            if ((exp.data[maxLength - 1] & 0x80000000) != 0)
                throw (new ArithmeticException("Positive exponents only."));

            BigInteger resultNum = 1;
            BigInteger tempNum;
            bool thisNegative = false;

            if ((this.data[maxLength - 1] & 0x80000000) != 0) {   // negative this
                tempNum = -this % n;
                thisNegative = true;
            }
            else
                tempNum = this % n;  // ensures (tempNum * tempNum) < b^(2k)

            if ((n.data[maxLength - 1] & 0x80000000) != 0)   // negative n
                n = -n;

            // calculate constant = b^(2k) / m
            BigInteger constant = new BigInteger();

            int i = n.dataLength << 1;
            constant.data[i] = 0x00000001;
            constant.dataLength = i + 1;

            constant = constant / n;
            int totalBits = exp.bitCount();
            int count = 0;

            // perform squaring and multiply exponentiation
            for (int pos = 0; pos < exp.dataLength; pos++) {
                uint mask = 0x01;
                //Console.WriteLine("pos = " + pos);

                for (int index = 0; index < 32; index++) {
                    if ((exp.data[pos] & mask) != 0)
                        resultNum = BarrettReduction(resultNum * tempNum, n, constant);

                    mask <<= 1;

                    tempNum = BarrettReduction(tempNum * tempNum, n, constant);


                    if (tempNum.dataLength == 1 && tempNum.data[0] == 1) {
                        if (thisNegative && (exp.data[0] & 0x1) != 0)    //odd exp
                            return -resultNum;
                        return resultNum;
                    }
                    count++;
                    if (count == totalBits)
                        break;
                }
            }

            if (thisNegative && (exp.data[0] & 0x1) != 0)    //odd exp
                return -resultNum;

            return resultNum;
        }
开发者ID:Ricordanza,项目名称:poderosa,代码行数:63,代码来源:BigInteger.cs


注:本文中的Granados.BigInteger.bitCount方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。