本文整理汇总了C#中Granados.BigInteger.BarrettReduction方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.BarrettReduction方法的具体用法?C# BigInteger.BarrettReduction怎么用?C# BigInteger.BarrettReduction使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Granados.BigInteger
的用法示例。
在下文中一共展示了BigInteger.BarrettReduction方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: LucasSequenceHelper
//***********************************************************************
// Performs the calculation of the kth term in the Lucas Sequence.
// For details of the algorithm, see reference [9].
//
// k must be odd. i.e LSB == 1
//***********************************************************************
private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
BigInteger k, BigInteger n,
BigInteger constant, int s) {
BigInteger[] result = new BigInteger[3];
if ((k.data[0] & 0x00000001) == 0)
throw (new ArgumentException("Argument k must be odd."));
int numbits = k.bitCount();
uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);
// v = v0, v1 = v1, u1 = u1, Q_k = Q^0
BigInteger v = 2 % n, Q_k = 1 % n,
v1 = P % n, u1 = Q_k;
bool flag = true;
for (int i = k.dataLength - 1; i >= 0; i--) { // iterate on the binary expansion of k
//Console.WriteLine("round");
while (mask != 0) {
if (i == 0 && mask == 0x00000001) // last bit
break;
if ((k.data[i] & mask) != 0) { // bit is set
// index doubling with addition
u1 = (u1 * v1) % n;
v = ((v * v1) - (P * Q_k)) % n;
v1 = n.BarrettReduction(v1 * v1, n, constant);
v1 = (v1 - ((Q_k * Q) << 1)) % n;
if (flag)
flag = false;
else
Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
Q_k = (Q_k * Q) % n;
}
else {
// index doubling
u1 = ((u1 * v) - Q_k) % n;
v1 = ((v * v1) - (P * Q_k)) % n;
v = n.BarrettReduction(v * v, n, constant);
v = (v - (Q_k << 1)) % n;
if (flag) {
Q_k = Q % n;
flag = false;
}
else
Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
}
mask >>= 1;
}
mask = 0x80000000;
}
// at this point u1 = u(n+1) and v = v(n)
// since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)
u1 = ((u1 * v) - Q_k) % n;
v = ((v * v1) - (P * Q_k)) % n;
if (flag)
flag = false;
else
Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
Q_k = (Q_k * Q) % n;
for (int i = 0; i < s; i++) {
// index doubling
u1 = (u1 * v) % n;
v = ((v * v) - (Q_k << 1)) % n;
if (flag) {
Q_k = Q % n;
flag = false;
}
else
Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
}
result[0] = u1;
result[1] = v;
result[2] = Q_k;
return result;
}
示例2: LucasStrongTestHelper
private bool LucasStrongTestHelper(BigInteger thisVal) {
// Do the test (selects D based on Selfridge)
// Let D be the first element of the sequence
// 5, -7, 9, -11, 13, ... for which J(D,n) = -1
// Let P = 1, Q = (1-D) / 4
long D = 5, sign = -1, dCount = 0;
bool done = false;
while (!done) {
int Jresult = BigInteger.Jacobi(D, thisVal);
if (Jresult == -1)
done = true; // J(D, this) = 1
else {
if (Jresult == 0 && Math.Abs(D) < thisVal) // divisor found
return false;
if (dCount == 20) {
// check for square
BigInteger root = thisVal.sqrt();
if (root * root == thisVal)
return false;
}
//Console.WriteLine(D);
D = (Math.Abs(D) + 2) * sign;
sign = -sign;
}
dCount++;
}
long Q = (1 - D) >> 2;
/*
Console.WriteLine("D = " + D);
Console.WriteLine("Q = " + Q);
Console.WriteLine("(n,D) = " + thisVal.gcd(D));
Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
*/
BigInteger p_add1 = thisVal + 1;
int s = 0;
for (int index = 0; index < p_add1.dataLength; index++) {
uint mask = 0x01;
for (int i = 0; i < 32; i++) {
if ((p_add1.data[index] & mask) != 0) {
index = p_add1.dataLength; // to break the outer loop
break;
}
mask <<= 1;
s++;
}
}
BigInteger t = p_add1 >> s;
// calculate constant = b^(2k) / m
// for Barrett Reduction
BigInteger constant = new BigInteger();
int nLen = thisVal.dataLength << 1;
constant.data[nLen] = 0x00000001;
constant.dataLength = nLen + 1;
constant = constant / thisVal;
BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
bool isPrime = false;
if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
(lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) {
// u(t) = 0 or V(t) = 0
isPrime = true;
}
for (int i = 1; i < s; i++) {
if (!isPrime) {
// doubling of index
lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;
//lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;
if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
isPrime = true;
}
lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant); //Q^k
}
if (isPrime) { // additional checks for composite numbers
// If n is prime and gcd(n, Q) == 1, then
// Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n
BigInteger g = thisVal.gcd(Q);
//.........这里部分代码省略.........