本文整理汇总了C#中Granados.BigInteger.ToString方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.ToString方法的具体用法?C# BigInteger.ToString怎么用?C# BigInteger.ToString使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Granados.BigInteger
的用法示例。
在下文中一共展示了BigInteger.ToString方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Main1
public static void Main1(string[] args) {
// Known problem -> these two pseudoprimes passes my implementation of
// primality test but failed in JDK's isProbablePrime test.
byte[] pseudoPrime1 = { (byte)0x00,
(byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A,
(byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C,
(byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3,
(byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41,
(byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56,
(byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE,
(byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41,
(byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA,
(byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF,
(byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D,
(byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3,
};
byte[] pseudoPrime2 = { (byte)0x00,
(byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7,
(byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E,
(byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3,
(byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93,
(byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF,
(byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20,
(byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8,
(byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F,
(byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C,
(byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80,
(byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB,
};
Console.WriteLine("List of primes < 2000\n---------------------");
int limit = 100, count = 0;
for (int i = 0; i < 2000; i++) {
if (i >= limit) {
Console.WriteLine();
limit += 100;
}
BigInteger p = new BigInteger(-i);
if (p.isProbablePrime()) {
Console.Write(i + ", ");
count++;
}
}
Console.WriteLine("\nCount = " + count);
BigInteger bi1 = new BigInteger(pseudoPrime1);
Console.WriteLine("\n\nPrimality testing for\n" + bi1.ToString() + "\n");
Console.WriteLine("SolovayStrassenTest(5) = " + bi1.SolovayStrassenTest(5));
Console.WriteLine("RabinMillerTest(5) = " + bi1.RabinMillerTest(5));
Console.WriteLine("FermatLittleTest(5) = " + bi1.FermatLittleTest(5));
Console.WriteLine("isProbablePrime() = " + bi1.isProbablePrime());
Console.Write("\nGenerating 512-bits random pseudoprime. . .");
Random rand = new Random();
BigInteger prime = BigInteger.genPseudoPrime(512, 5, rand);
Console.WriteLine("\n" + prime);
//int dwStart = System.Environment.TickCount;
//BigInteger.MulDivTest(100000);
//BigInteger.RSATest(10);
//BigInteger.RSATest2(10);
//Console.WriteLine(System.Environment.TickCount - dwStart);
}
示例2: RSATest
//***********************************************************************
// Tests the correct implementation of the modulo exponential function
// using RSA encryption and decryption (using pre-computed encryption and
// decryption keys).
//***********************************************************************
public static void RSATest(int rounds) {
Random rand = new Random(1);
byte[] val = new byte[64];
// private and public key
BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16);
BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16);
BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16);
Console.WriteLine("e =\n" + bi_e.ToString(10));
Console.WriteLine("\nd =\n" + bi_d.ToString(10));
Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");
for (int count = 0; count < rounds; count++) {
// generate data of random length
int t1 = 0;
while (t1 == 0)
t1 = (int)(rand.NextDouble() * 65);
bool done = false;
while (!done) {
for (int i = 0; i < 64; i++) {
if (i < t1)
val[i] = (byte)(rand.NextDouble() * 256);
else
val[i] = 0;
if (val[i] != 0)
done = true;
}
}
while (val[0] == 0)
val[0] = (byte)(rand.NextDouble() * 256);
Console.Write("Round = " + count);
// encrypt and decrypt data
BigInteger bi_data = new BigInteger(val, t1);
BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);
// compare
if (bi_decrypted != bi_data) {
Console.WriteLine("\nError at round " + count);
Console.WriteLine(bi_data + "\n");
return;
}
Console.WriteLine(" <PASSED>.");
}
}