本文整理汇总了C#中Encog.Util.CSV.ReadCSV.Get方法的典型用法代码示例。如果您正苦于以下问题:C# ReadCSV.Get方法的具体用法?C# ReadCSV.Get怎么用?C# ReadCSV.Get使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Encog.Util.CSV.ReadCSV
的用法示例。
在下文中一共展示了ReadCSV.Get方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: LoadedRow
/// <summary>
/// Construct a loaded row.
/// </summary>
///
/// <param name="csv">The CSV file to use.</param>
/// <param name="extra">The number of extra columns to add.</param>
public LoadedRow(ReadCSV csv, int extra)
{
int count = csv.GetCount();
_data = new String[count + extra];
for (int i = 0; i < count; i++)
{
_data[i] = csv.Get(i);
}
}
示例2: LoadedRow
public LoadedRow(ReadCSV csv, int extra)
{
int count;
int num2;
if ((((uint) num2) + ((uint) count)) >= 0)
{
}
count = csv.GetCount();
this._x4a3f0a05c02f235f = new string[count + extra];
for (num2 = 0; num2 < count; num2++)
{
this._x4a3f0a05c02f235f[num2] = csv.Get(num2);
}
}
示例3: PropertyConstraints
/// <summary>
/// Private constructor.
/// </summary>
private PropertyConstraints()
{
_data = new Dictionary<String, List<PropertyEntry>>();
try
{
Stream mask0 = ResourceLoader.CreateStream("Encog.Resources.analyst.csv");
var csv = new ReadCSV(mask0, false, CSVFormat.EgFormat);
while (csv.Next())
{
String sectionStr = csv.Get(0);
String nameStr = csv.Get(1);
String typeStr = csv.Get(2);
// determine type
PropertyType t;
if ("boolean".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
{
t = PropertyType.TypeBoolean;
}
else if ("real".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
{
t = PropertyType.TypeDouble;
}
else if ("format".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
{
t = PropertyType.TypeFormat;
}
else if ("int".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
{
t = PropertyType.TypeInteger;
}
else if ("list-string".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
{
t = PropertyType.TypeListString;
}
else if ("string".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
{
t = PropertyType.TypeString;
}
else
{
throw new AnalystError("Unknown type constraint: "
+ typeStr);
}
var entry = new PropertyEntry(t, nameStr,
sectionStr);
List<PropertyEntry> list;
if (_data.ContainsKey(sectionStr))
{
list = _data[sectionStr];
}
else
{
list = new List<PropertyEntry>();
_data[sectionStr] = list;
}
list.Add(entry);
}
csv.Close();
mask0.Close();
}
catch (IOException e)
{
throw new EncogError(e);
}
}
示例4: Execute
/// <summary>
/// Program entry point.
/// </summary>
/// <param name="app">Holds arguments and other info.</param>
public void Execute(IExampleInterface app)
{
// Download the data that we will attempt to model.
string filename = DownloadData(app.Args);
// Define the format of the data file.
// This area will change, depending on the columns and
// format of the file that you are trying to model.
var format = new CSVFormat('.', ' '); // decimal point and space separated
IVersatileDataSource source = new CSVDataSource(filename, false, format);
var data = new VersatileMLDataSet(source);
data.NormHelper.Format = format;
ColumnDefinition columnMPG = data.DefineSourceColumn("mpg", 0, ColumnType.Continuous);
ColumnDefinition columnCylinders = data.DefineSourceColumn("cylinders", 1, ColumnType.Ordinal);
// It is very important to predefine ordinals, so that the order is known.
columnCylinders.DefineClass(new[] {"3", "4", "5", "6", "8"});
data.DefineSourceColumn("displacement", 2, ColumnType.Continuous);
ColumnDefinition columnHorsePower = data.DefineSourceColumn("horsepower", 3, ColumnType.Continuous);
data.DefineSourceColumn("weight", 4, ColumnType.Continuous);
data.DefineSourceColumn("acceleration", 5, ColumnType.Continuous);
ColumnDefinition columnModelYear = data.DefineSourceColumn("model_year", 6, ColumnType.Ordinal);
columnModelYear.DefineClass(new[]
{"70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82"});
data.DefineSourceColumn("origin", 7, ColumnType.Nominal);
// Define how missing values are represented.
data.NormHelper.DefineUnknownValue("?");
data.NormHelper.DefineMissingHandler(columnHorsePower, new MeanMissingHandler());
// Analyze the data, determine the min/max/mean/sd of every column.
data.Analyze();
// Map the prediction column to the output of the model, and all
// other columns to the input.
data.DefineSingleOutputOthersInput(columnMPG);
// Create feedforward neural network as the model type. MLMethodFactory.TYPE_FEEDFORWARD.
// You could also other model types, such as:
// MLMethodFactory.SVM: Support Vector Machine (SVM)
// MLMethodFactory.TYPE_RBFNETWORK: RBF Neural Network
// MLMethodFactor.TYPE_NEAT: NEAT Neural Network
// MLMethodFactor.TYPE_PNN: Probabilistic Neural Network
var model = new EncogModel(data);
model.SelectMethod(data, MLMethodFactory.TypeFeedforward);
// Send any output to the console.
model.Report = new ConsoleStatusReportable();
// Now normalize the data. Encog will automatically determine the correct normalization
// type based on the model you chose in the last step.
data.Normalize();
// Hold back some data for a final validation.
// Shuffle the data into a random ordering.
// Use a seed of 1001 so that we always use the same holdback and will get more consistent results.
model.HoldBackValidation(0.3, true, 1001);
// Choose whatever is the default training type for this model.
model.SelectTrainingType(data);
// Use a 5-fold cross-validated train. Return the best method found.
var bestMethod = (IMLRegression) model.Crossvalidate(5, true);
// Display the training and validation errors.
Console.WriteLine(@"Training error: " + model.CalculateError(bestMethod, model.TrainingDataset));
Console.WriteLine(@"Validation error: " + model.CalculateError(bestMethod, model.ValidationDataset));
// Display our normalization parameters.
NormalizationHelper helper = data.NormHelper;
Console.WriteLine(helper.ToString());
// Display the final model.
Console.WriteLine("Final model: " + bestMethod);
// Loop over the entire, original, dataset and feed it through the model.
// This also shows how you would process new data, that was not part of your
// training set. You do not need to retrain, simply use the NormalizationHelper
// class. After you train, you can save the NormalizationHelper to later
// normalize and denormalize your data.
source.Close();
var csv = new ReadCSV(filename, false, format);
var line = new String[7];
IMLData input = helper.AllocateInputVector();
while (csv.Next())
{
var result = new StringBuilder();
line[0] = csv.Get(1);
line[1] = csv.Get(2);
line[2] = csv.Get(3);
line[3] = csv.Get(4);
line[4] = csv.Get(5);
line[5] = csv.Get(6);
//.........这里部分代码省略.........
示例5: x08af8e36ac9914b5
private void x08af8e36ac9914b5()
{
ReadCSV dcsv = null;
try
{
int num;
double num2;
dcsv = new ReadCSV(base.InputFilename.ToString(), base.ExpectInputHeaders, base.InputFormat);
goto Label_006B;
Label_0021:
num++;
if ((((uint) num2) & 0) == 0)
{
}
Label_005E:
while (dcsv.Next())
{
if (!base.ShouldStop())
{
goto Label_0075;
}
if ((((uint) num2) + ((uint) num)) <= uint.MaxValue)
{
break;
}
}
return;
Label_006B:
base.ResetStatus();
num = 0;
goto Label_005E;
Label_0075:
base.UpdateStatus("Reading data");
using (IEnumerator<BaseCachedColumn> enumerator = base.Columns.GetEnumerator())
{
BaseCachedColumn column;
FileData data;
Label_008F:
if (enumerator.MoveNext() || ((((uint) num) + ((uint) num)) > uint.MaxValue))
{
goto Label_011D;
}
goto Label_0021;
Label_00BD:
if (column.Input)
{
goto Label_00D8;
}
goto Label_008F;
Label_00C7:
if (0 == 0)
{
}
goto Label_008F;
Label_00CC:
if (column is FileData)
{
goto Label_00BD;
}
goto Label_00C7;
Label_00D8:
data = (FileData) column;
string str = dcsv.Get(data.Index);
num2 = base.InputFormat.Parse(str);
data.Data[num] = num2;
goto Label_008F;
Label_0111:
if (0 == 0)
{
goto Label_00CC;
}
goto Label_00BD;
Label_011D:
column = enumerator.Current;
goto Label_0111;
}
}
finally
{
base.ReportDone("Reading data");
if (dcsv != null)
{
dcsv.Close();
}
}
}
示例6: Execute
//.........这里部分代码省略.........
// Now normalize the data. Encog will automatically determine the
// correct normalization
// type based on the model you chose in the last step.
data.Normalize();
// Set time series.
data.LeadWindowSize = 1;
data.LagWindowSize = WindowSize;
// Hold back some data for a final validation.
// Do not shuffle the data into a random ordering. (never shuffle
// time series)
// Use a seed of 1001 so that we always use the same holdback and
// will get more consistent results.
model.HoldBackValidation(0.3, false, 1001);
// Choose whatever is the default training type for this model.
model.SelectTrainingType(data);
// Use a 5-fold cross-validated train. Return the best method found.
// (never shuffle time series)
var bestMethod = (IMLRegression) model.Crossvalidate(5,
false);
// Display the training and validation errors.
Console.WriteLine(@"Training error: "
+ model.CalculateError(bestMethod,
model.TrainingDataset));
Console.WriteLine(@"Validation error: "
+ model.CalculateError(bestMethod,
model.ValidationDataset));
// Display our normalization parameters.
NormalizationHelper helper = data.NormHelper;
Console.WriteLine(helper.ToString());
// Display the final model.
Console.WriteLine(@"Final model: " + bestMethod);
// Loop over the entire, original, dataset and feed it through the
// model. This also shows how you would process new data, that was
// not part of your training set. You do not need to retrain, simply
// use the NormalizationHelper class. After you train, you can save
// the NormalizationHelper to later normalize and denormalize your
// data.
source.Close();
var csv = new ReadCSV(filename, true, format);
var line = new String[2];
// Create a vector to hold each time-slice, as we build them.
// These will be grouped together into windows.
var slice = new double[2];
var window = new VectorWindow(WindowSize + 1);
IMLData input = helper.AllocateInputVector(WindowSize + 1);
// Only display the first 100
int stopAfter = 100;
while (csv.Next() && stopAfter > 0)
{
var result = new StringBuilder();
line[0] = csv.Get(2); // ssn
line[1] = csv.Get(3); // dev
helper.NormalizeInputVector(line, slice, false);
// enough data to build a full window?
if (window.IsReady())
{
window.CopyWindow(((BasicMLData) input).Data, 0);
String correct = csv.Get(2); // trying to predict SSN.
IMLData output = bestMethod.Compute(input);
String predicted = helper
.DenormalizeOutputVectorToString(output)[0];
result.Append(line);
result.Append(" -> predicted: ");
result.Append(predicted);
result.Append("(correct: ");
result.Append(correct);
result.Append(")");
Console.WriteLine(result.ToString());
}
// Add the normalized slice to the window. We do this just after
// the after checking to see if the window is ready so that the
// window is always one behind the current row. This is because
// we are trying to predict next row.
window.Add(slice);
stopAfter--;
}
csv.Close();
// Delete data file and shut down.
File.Delete(filename);
EncogFramework.Instance.Shutdown();
}
示例7: ReadFile
/// <summary>
/// Read the CSV file.
/// </summary>
private void ReadFile()
{
ReadCSV csv = null;
try
{
csv = new ReadCSV(InputFilename.ToString(),
ExpectInputHeaders, Format);
ResetStatus();
int row = 0;
while (csv.Next() && !ShouldStop())
{
UpdateStatus("Reading data");
foreach (BaseCachedColumn column in Columns)
{
if (column is FileData)
{
if (column.Input)
{
var fd = (FileData) column;
String str = csv.Get(fd.Index);
double d = Format.Parse(str);
fd.Data[row] = d;
}
}
}
row++;
}
}
finally
{
ReportDone("Reading data");
if (csv != null)
{
csv.Close();
}
}
}
示例8: Process
public void Process(EncogAnalyst target)
{
string text1;
int num;
int num2;
string str;
bool flag;
bool flag2;
bool flag3;
AnalyzedField field3;
int num3;
IList<AnalystClassItem> analyzedClassMembers;
IList<AnalystClassItem> classMembers;
int num4;
DataField[] fieldArray;
int num5;
AnalyzedField[] fieldArray2;
int num6;
AnalyzedField[] fieldArray3;
int num7;
AnalyzedField[] fieldArray4;
int num8;
CSVFormat format = ConvertStringConst.ConvertToCSVFormat(this._x5786461d089b10a0);
ReadCSV dcsv = new ReadCSV(this._xb41a802ca5fde63b, this._x94e6ca5ac178dbd0, format);
Label_0676:
if (dcsv.Next())
{
if (this._xa942970cc8a85fd4 == null)
{
this.xd2a854890d89a856(dcsv);
}
num = 0;
while (num < dcsv.ColumnCount)
{
if (this._xa942970cc8a85fd4 != null)
{
this._xa942970cc8a85fd4[num].Analyze1(dcsv.Get(num));
}
num++;
}
if (((uint) num2) >= 0)
{
goto Label_0676;
}
}
else if (this._xa942970cc8a85fd4 != null)
{
fieldArray2 = this._xa942970cc8a85fd4;
}
else
{
if ((((uint) num8) & 0) == 0)
{
goto Label_05F5;
}
goto Label_05D0;
}
if ((((uint) num2) - ((uint) flag2)) >= 0)
{
for (num6 = 0; num6 < fieldArray2.Length; num6++)
{
fieldArray2[num6].CompletePass1();
}
goto Label_05F5;
}
goto Label_05D0;
Label_0011:
num5++;
if (((uint) num2) < 0)
{
goto Label_0251;
}
Label_002C:
if (num5 < fieldArray.Length)
{
fieldArray[num5] = this._xa942970cc8a85fd4[num5].FinalizeField();
if ((((uint) num6) + ((uint) num)) <= uint.MaxValue)
{
goto Label_0011;
}
if ((((uint) num8) | 3) != 0)
{
goto Label_00E8;
}
}
else
{
if (((uint) flag2) > uint.MaxValue)
{
goto Label_0336;
}
target.Script.Fields = fieldArray;
return;
}
Label_00A6:
if (this._xa942970cc8a85fd4.Length == target.Script.Fields.Length)
{
num3 = 0;
goto Label_00EE;
}
//.........这里部分代码省略.........
示例9: ExtractFields
/// <summary>
/// Extract fields from a file into a numeric array for machine learning.
/// </summary>
///
/// <param name="analyst">The analyst to use.</param>
/// <param name="headers">The headers for the input data.</param>
/// <param name="csv">The CSV that holds the input data.</param>
/// <param name="outputLength">The length of the returned array.</param>
/// <param name="skipOutput">True if the output should be skipped.</param>
/// <returns>The encoded data.</returns>
public static double[] ExtractFields(EncogAnalyst analyst,
CSVHeaders headers, ReadCSV csv,
int outputLength, bool skipOutput)
{
var output = new double[outputLength];
int outputIndex = 0;
foreach (AnalystField stat in analyst.Script.Normalize.NormalizedFields)
{
if (stat.Action == NormalizationAction.Ignore)
{
continue;
}
if (stat.Output && skipOutput)
{
continue;
}
int index = headers.Find(stat.Name);
String str = csv.Get(index);
// is this an unknown value?
if (str.Equals("?") || str.Length == 0)
{
IHandleMissingValues handler = analyst.Script.Normalize.MissingValues;
double[] d = handler.HandleMissing(analyst, stat);
// should we skip the entire row
if (d == null)
{
return null;
}
// copy the returned values in place of the missing values
for (int i = 0; i < d.Length; i++)
{
output[outputIndex++] = d[i];
}
}
else
{
// known value
if (stat.Action == NormalizationAction.Normalize)
{
double d = csv.Format.Parse(str.Trim());
d = stat.Normalize(d);
output[outputIndex++] = d;
}
else
{
double[] d = stat.Encode(str.Trim());
foreach (double element in d)
{
output[outputIndex++] = element;
}
}
}
}
return output;
}
示例10: ExtractFields
public static double[] ExtractFields(EncogAnalyst analyst, CSVHeaders headers, ReadCSV csv, int outputLength, bool skipOutput)
{
double[] numArray = new double[outputLength];
int num = 0;
using (IEnumerator<AnalystField> enumerator = analyst.Script.Normalize.NormalizedFields.GetEnumerator())
{
AnalystField field;
int num2;
string str;
IHandleMissingValues values;
double[] numArray2;
int num3;
double num4;
double num5;
double[] numArray4;
double[] numArray5;
int num6;
goto Label_0070;
Label_0022:
if (!skipOutput)
{
goto Label_02B7;
}
Label_0029:
if ((((uint) skipOutput) + ((uint) num6)) > uint.MaxValue)
{
goto Label_00B1;
}
goto Label_0070;
Label_0043:
if ((((uint) num4) - ((uint) outputLength)) > uint.MaxValue)
{
goto Label_0022;
}
if (((uint) num3) > uint.MaxValue)
{
goto Label_022A;
}
Label_0070:
if (enumerator.MoveNext())
{
goto Label_02CD;
}
goto Label_01C2;
Label_007E:
if (((uint) num2) > uint.MaxValue)
{
goto Label_021B;
}
goto Label_0043;
Label_009A:
if (!field.Output)
{
goto Label_02B7;
}
goto Label_0022;
Label_00B1:
num5 = numArray5[num6];
Label_00B9:
numArray[num++] = num5;
num6++;
Label_00C8:
if (num6 < numArray5.Length)
{
goto Label_00B1;
}
if ((((uint) num3) + ((uint) num5)) >= 0)
{
goto Label_0116;
}
Label_00E8:
numArray5 = field.Encode(str.Trim());
num6 = 0;
if ((((uint) num6) + ((uint) num5)) >= 0)
{
goto Label_00C8;
}
Label_0116:
if ((((uint) num4) - ((uint) num5)) <= uint.MaxValue)
{
goto Label_007E;
}
goto Label_01C2;
Label_0138:
if (field.Action == NormalizationAction.Normalize)
{
num4 = csv.Format.Parse(str.Trim());
num4 = field.Normalize(num4);
numArray[num++] = num4;
if ((((uint) outputLength) - ((uint) num6)) > uint.MaxValue)
{
goto Label_022A;
}
goto Label_0070;
}
if ((((uint) num2) - ((uint) outputLength)) <= uint.MaxValue)
{
goto Label_00E8;
}
goto Label_01C2;
//.........这里部分代码省略.........
示例11: Process
/// <summary>
/// Perform the analysis.
/// </summary>
/// <param name="target">The Encog analyst object to analyze.</param>
public void Process(EncogAnalyst target)
{
int count = 0;
CSVFormat csvFormat = ConvertStringConst
.ConvertToCSVFormat(_format);
var csv = new ReadCSV(_filename, _headers, csvFormat);
// pass one, calculate the min/max
while (csv.Next())
{
if (_fields == null)
{
GenerateFields(csv);
}
for (int i = 0; i < csv.ColumnCount; i++)
{
if (_fields != null)
{
_fields[i].Analyze1(csv.Get(i));
}
}
count++;
}
if (count == 0)
{
throw new AnalystError("Can't analyze file, it is empty.");
}
if (_fields != null)
{
foreach (AnalyzedField field in _fields)
{
field.CompletePass1();
}
}
csv.Close();
// pass two, standard deviation
csv = new ReadCSV(_filename, _headers, csvFormat);
while (csv.Next())
{
for (int i = 0; i < csv.ColumnCount; i++)
{
if (_fields != null)
{
_fields[i].Analyze2(csv.Get(i));
}
}
}
if (_fields != null)
{
foreach (AnalyzedField field in _fields)
{
field.CompletePass2();
}
}
csv.Close();
String str = _script.Properties.GetPropertyString(
ScriptProperties.SetupConfigAllowedClasses) ?? "";
bool allowInt = str.Contains("int");
bool allowReal = str.Contains("real")
|| str.Contains("double");
bool allowString = str.Contains("string");
// remove any classes that did not qualify
foreach (AnalyzedField field in _fields)
{
if (field.Class)
{
if (!allowInt && field.Integer)
{
field.Class = false;
}
if (!allowString && (!field.Integer && !field.Real))
{
field.Class = false;
}
if (!allowReal && field.Real && !field.Integer)
{
field.Class = false;
}
}
}
//.........这里部分代码省略.........
示例12: Analyze
/// <summary>
/// Analyze the input file.
/// </summary>
/// <param name="input">The input file.</param>
/// <param name="headers">True, if there are headers.</param>
/// <param name="format">The format of the CSV data.</param>
public virtual void Analyze(FileInfo input, bool headers,
CSVFormat format)
{
ResetStatus();
InputFilename = input;
ExpectInputHeaders = headers;
Format = format;
_columnMapping.Clear();
_columns.Clear();
// first count the rows
TextReader reader = null;
try
{
int recordCount = 0;
reader = new StreamReader(InputFilename.OpenRead());
while (reader.ReadLine() != null)
{
UpdateStatus(true);
recordCount++;
}
if (headers)
{
recordCount--;
}
RecordCount = recordCount;
}
catch (IOException ex)
{
throw new QuantError(ex);
}
finally
{
ReportDone(true);
if (reader != null)
{
try
{
reader.Close();
}
catch (IOException e)
{
throw new QuantError(e);
}
}
InputFilename = input;
ExpectInputHeaders = headers;
Format = format;
}
// now analyze columns
ReadCSV csv = null;
try
{
csv = new ReadCSV(input.ToString(), headers, format);
if (!csv.Next())
{
throw new QuantError("File is empty");
}
for (int i = 0; i < csv.ColumnCount; i++)
{
String name;
if (headers)
{
name = AttemptResolveName(csv.ColumnNames[i]);
}
else
{
name = "Column-" + (i + 1);
}
// determine if it should be an input/output field
String str = csv.Get(i);
bool io = false;
try
{
Format.Parse(str);
io = true;
}
catch (FormatException ex)
{
EncogLogging.Log(ex);
}
AddColumn(new FileData(name, i, io, io));
}
}
finally
//.........这里部分代码省略.........
示例13: GetColumnData
/// <summary>
/// Get the data for a specific column.
/// </summary>
/// <param name="name">The column to read.</param>
/// <param name="csv">The CSV file to read from.</param>
/// <returns>The column data.</returns>
public String GetColumnData(String name, ReadCSV csv)
{
if (!_columnMapping.ContainsKey(name))
{
return null;
}
BaseCachedColumn column = _columnMapping[name];
if (!(column is FileData))
{
return null;
}
var fd = (FileData) column;
return csv.Get(fd.Index);
}
示例14: Analyze
public virtual void Analyze(FileInfo input, bool headers, CSVFormat format)
{
ReadCSV dcsv;
int num2;
bool flag;
base.ResetStatus();
goto Label_02AA;
Label_0143:
dcsv = null;
try
{
string str;
string str2;
dcsv = new ReadCSV(input.ToString(), headers, format);
if (0 == 0)
{
goto Label_0273;
}
goto Label_0245;
Label_0160:
if (num2 < dcsv.ColumnCount)
{
goto Label_0257;
}
if (((((uint) headers) - ((uint) headers)) <= uint.MaxValue) && (((uint) headers) <= uint.MaxValue))
{
return;
}
goto Label_01A8;
Label_019D:
num2++;
goto Label_022E;
Label_01A8:
str = x0049197442052640(dcsv.ColumnNames[num2]);
goto Label_01D4;
Label_01BF:
str = "Column-" + (num2 + 1);
Label_01D4:
str2 = dcsv.Get(num2);
flag = false;
try
{
base.InputFormat.Parse(str2);
flag = true;
}
catch (FormatException exception3)
{
EncogLogging.Log(exception3);
}
this.AddColumn(new FileData(str, num2, flag, flag));
if ((((uint) num2) + ((uint) flag)) <= uint.MaxValue)
{
goto Label_019D;
}
Label_022E:
if (((uint) flag) <= uint.MaxValue)
{
goto Label_0160;
}
return;
Label_0245:
if (((uint) headers) < 0)
{
goto Label_0273;
}
Label_0257:
if (!headers)
{
goto Label_01BF;
}
goto Label_01A8;
Label_0273:
while (!dcsv.Next())
{
throw new QuantError("File is empty");
}
num2 = 0;
goto Label_0160;
}
finally
{
if (dcsv != null)
{
dcsv.Close();
}
base.Analyzed = true;
}
if (-1 == 0)
{
goto Label_0143;
}
if (2 != 0)
{
return;
}
Label_02AA:
base.InputFilename = input;
base.ExpectInputHeaders = headers;
base.InputFormat = format;
this._x5f81ddd16c23e357.Clear();
//.........这里部分代码省略.........
示例15: GetColumnData
public string GetColumnData(string name, ReadCSV csv)
{
if (this._x5f81ddd16c23e357.ContainsKey(name))
{
FileData data;
BaseCachedColumn column = this._x5f81ddd16c23e357[name];
while (!(column is FileData))
{
return null;
}
if (0 == 0)
{
data = (FileData) column;
}
return csv.Get(data.Index);
}
return null;
}