本文整理汇总了C#中Encog.Util.CSV.ReadCSV.Close方法的典型用法代码示例。如果您正苦于以下问题:C# ReadCSV.Close方法的具体用法?C# ReadCSV.Close怎么用?C# ReadCSV.Close使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Encog.Util.CSV.ReadCSV
的用法示例。
在下文中一共展示了ReadCSV.Close方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: LoadTestData
protected override void LoadTestData(string testFile)
{
ReadCSV test_csv = new ReadCSV(testFile, true, CSVFormat.DecimalPoint);
List<double[]> test_input = new List<double[]>();
test_input_orig = new List<double[]>();
while (test_csv.Next())
{
double x = test_csv.GetDouble(0);
test_input.Add(new[] { x });
test_input_orig.Add(new[] { x });
}
test_csv.Close();
//Analyze(ref test_input);
Normalize(ref test_input, ref vmin, ref vmax);
testData = new List<IMLData>();
foreach (var d in test_input)
{
testData.Add(new BasicMLData(d));
}
}
示例2: Process
/// <summary>
/// Process the file and output to the target file.
/// </summary>
/// <param name="target">The target file to write to.</param>
public void Process(string target)
{
var csv = new ReadCSV(InputFilename.ToString(), ExpectInputHeaders, Format);
TextWriter tw = new StreamWriter(target);
ResetStatus();
while (csv.Next())
{
var line = new StringBuilder();
UpdateStatus(false);
line.Append(GetColumnData(FileData.Date, csv));
line.Append(" ");
line.Append(GetColumnData(FileData.Time, csv));
line.Append(";");
line.Append(Format.Format(double.Parse(GetColumnData(FileData.Open, csv)), Precision));
line.Append(";");
line.Append(Format.Format(double.Parse(GetColumnData(FileData.High, csv)), Precision));
line.Append(";");
line.Append(Format.Format(double.Parse(GetColumnData(FileData.Low, csv)), Precision));
line.Append(";");
line.Append(Format.Format(double.Parse(GetColumnData(FileData.Close, csv)), Precision));
line.Append(";");
line.Append(Format.Format(double.Parse(GetColumnData(FileData.Volume, csv)), Precision));
tw.WriteLine(line.ToString());
}
ReportDone(false);
csv.Close();
tw.Close();
}
示例3: ReadAndCallLoader
public ICollection<LoadedMarketData> ReadAndCallLoader(TickerSymbol symbol, IList<MarketDataType> neededTypes, DateTime from, DateTime to, string File)
{
try
{
//We got a file, lets load it.
ICollection<LoadedMarketData> result = new List<LoadedMarketData>();
ReadCSV csv = new ReadCSV(File, true, CSVFormat.English);
csv.DateFormat = "yyyy.MM.dd HH:mm:ss";
DateTime ParsedDate = from;
// Time,Open,High,Low,Close,Volume
while (csv.Next() && ParsedDate >= from && ParsedDate <= to )
{
DateTime date = csv.GetDate("Time");
double Bid= csv.GetDouble("Bid");
double Ask = csv.GetDouble("Ask");
double AskVolume = csv.GetDouble("AskVolume");
double BidVolume= csv.GetDouble("BidVolume");
double _trade = ( Bid + Ask ) /2;
double _tradeSize = (AskVolume + BidVolume) / 2;
LoadedMarketData data = new LoadedMarketData(date, symbol);
data.SetData(MarketDataType.Trade, _trade);
data.SetData(MarketDataType.Volume, _tradeSize);
result.Add(data);
Console.WriteLine("Current DateTime:"+ParsedDate.ToShortDateString()+ " Time:"+ParsedDate.ToShortTimeString() +" Start date was "+from.ToShortDateString());
Console.WriteLine("Stopping at date:" + to.ToShortDateString() );
ParsedDate = date;
//double open = csv.GetDouble("Open");
//double close = csv.GetDouble("High");
//double high = csv.GetDouble("Low");
//double low = csv.GetDouble("Close");
//double volume = csv.GetDouble("Volume");
//LoadedMarketData data = new LoadedMarketData(date, symbol);
//data.SetData(MarketDataType.Open, open);
//data.SetData(MarketDataType.High, high);
//data.SetData(MarketDataType.Low, low);
//data.SetData(MarketDataType.Close, close);
//data.SetData(MarketDataType.Volume, volume);
result.Add(data);
}
csv.Close();
return result;
}
catch (Exception ex)
{
Console.WriteLine("Something went wrong reading the csv");
Console.WriteLine("Something went wrong reading the csv:" + ex.Message);
}
Console.WriteLine("Something went wrong reading the csv");
return null;
}
示例4: ReadAndCallLoader
public ICollection<LoadedMarketData> ReadAndCallLoader(TickerSymbol symbol, IList<MarketDataType> neededTypes, DateTime from, DateTime to,string File)
{
try
{
//We got a file, lets load it.
ICollection<LoadedMarketData> result = new List<LoadedMarketData>();
ReadCSV csv = new ReadCSV(File, true,LoadedFormat);
csv.DateFormat = DateTimeFormat.Normalize();
// Time,Open,High,Low,Close,Volume
while (csv.Next())
{
DateTime date = csv.GetDate("Time");
double open = csv.GetDouble("Open");
double close = csv.GetDouble("High");
double high = csv.GetDouble("Low");
double low = csv.GetDouble("Close");
double volume = csv.GetDouble("Volume");
LoadedMarketData data = new LoadedMarketData(date, symbol);
data.SetData(MarketDataType.Open, open);
data.SetData(MarketDataType.High, high);
data.SetData(MarketDataType.Low, low);
data.SetData(MarketDataType.Close, close);
data.SetData(MarketDataType.Volume, volume);
result.Add(data);
}
csv.Close();
return result;
}
catch (Exception ex)
{
Console.WriteLine("Something went wrong reading the csv");
Console.WriteLine("Something went wrong reading the csv:"+ex.Message);
}
Console.WriteLine("Something went wrong reading the csv");
return null;
}
示例5: Process
public void Process(FileInfo outputFile)
{
base.ValidateAnalyzed();
ReadCSV dcsv = new ReadCSV(base.InputFilename.ToString(), base.ExpectInputHeaders, base.InputFormat);
if (0 == 0)
{
LoadedRow row;
StreamWriter tw = base.PrepareOutputFile(outputFile);
base.ResetStatus();
while ((row = this.x75f8dae9674cb841(dcsv)) != null)
{
base.WriteRow(tw, row);
base.UpdateStatus(false);
}
base.ReportDone(false);
tw.Close();
}
dcsv.Close();
}
示例6: Load
/// <summary>
/// Load financial data from a CSV file.
/// </summary>
/// <param name="ticker">The ticker being loaded, ignored for a CSV load.</param>
/// <param name="dataNeeded">The data needed.</param>
/// <param name="from">The starting date.</param>
/// <param name="to">The ending date.</param>
/// <returns></returns>
public ICollection<LoadedMarketData> Load(TickerSymbol ticker, IList<MarketDataType> dataNeeded, DateTime from,
DateTime to)
{
try
{
if (File.Exists(TheFile))
{
//We got a file, lets load it.
TheFile = TheFile;
ICollection<LoadedMarketData> result = new List<LoadedMarketData>();
var csv = new ReadCSV(TheFile, true, CSVFormat.English);
// Time,Open,High,Low,Close,Volume
while (csv.Next())
{
DateTime date = csv.GetDate("Time");
double open = csv.GetDouble("Open");
double close = csv.GetDouble("High");
double high = csv.GetDouble("Low");
double low = csv.GetDouble("Close");
double volume = csv.GetDouble("Volume");
var data = new LoadedMarketData(date, ticker);
data.SetData(MarketDataType.Open, open);
data.SetData(MarketDataType.Volume, close);
data.SetData(MarketDataType.High, high);
data.SetData(MarketDataType.Low, low);
data.SetData(MarketDataType.Volume, volume);
result.Add(data);
}
csv.Close();
return result;
}
}
catch (Exception ex)
{
throw new LoaderError(ex);
}
throw new LoaderError(@"Something went wrong reading the csv");
}
示例7: CSVHeaders
/// <summary>
/// Construct the object.
/// </summary>
/// <param name="filename">The filename.</param>
/// <param name="headers">False if headers are not extended.</param>
/// <param name="format">The CSV format.</param>
public CSVHeaders(FileInfo filename, bool headers,
CSVFormat format)
{
_headerList = new List<String>();
_columnMapping = new Dictionary<String, Int32>();
ReadCSV csv = null;
try
{
csv = new ReadCSV(filename.ToString(), headers, format);
if (csv.Next())
{
if (headers)
{
foreach (String str in csv.ColumnNames)
{
_headerList.Add(str);
}
}
else
{
for (int i = 0; i < csv.ColumnCount; i++)
{
_headerList.Add("field:" + (i + 1));
}
}
}
Init();
}
finally
{
if (csv != null)
{
csv.Close();
}
}
}
示例8: Analyze
/// <summary>
/// Analyze the data. This counts the records and prepares the data to be
/// processed.
/// </summary>
/// <param name="theAnalyst">The analyst to use.</param>
/// <param name="inputFile">The input file to analyze.</param>
/// <param name="headers">True, if the input file has headers.</param>
/// <param name="format">The format of the input file.</param>
public void Analyze(EncogAnalyst theAnalyst,
FileInfo inputFile, bool headers, CSVFormat format)
{
InputFilename = inputFile;
ExpectInputHeaders = headers;
Format = format;
Analyzed = true;
_analyst = theAnalyst;
_data = new BasicMLDataSet();
ResetStatus();
int recordCount = 0;
int outputLength = _analyst.DetermineTotalColumns();
var csv = new ReadCSV(InputFilename.ToString(),
ExpectInputHeaders, Format);
ReadHeaders(csv);
_analystHeaders = new CSVHeaders(InputHeadings);
while (csv.Next() && !ShouldStop())
{
UpdateStatus(true);
double[] inputArray = AnalystNormalizeCSV.ExtractFields(
_analyst, _analystHeaders, csv, outputLength, true);
IMLData input = new BasicMLData(inputArray);
_data.Add(new BasicMLDataPair(input));
recordCount++;
}
RecordCount = recordCount;
Count = csv.ColumnCount;
ReadHeaders(csv);
csv.Close();
ReportDone(true);
}
示例9: x08af8e36ac9914b5
private void x08af8e36ac9914b5()
{
ReadCSV dcsv = null;
try
{
int num;
double num2;
dcsv = new ReadCSV(base.InputFilename.ToString(), base.ExpectInputHeaders, base.InputFormat);
goto Label_006B;
Label_0021:
num++;
if ((((uint) num2) & 0) == 0)
{
}
Label_005E:
while (dcsv.Next())
{
if (!base.ShouldStop())
{
goto Label_0075;
}
if ((((uint) num2) + ((uint) num)) <= uint.MaxValue)
{
break;
}
}
return;
Label_006B:
base.ResetStatus();
num = 0;
goto Label_005E;
Label_0075:
base.UpdateStatus("Reading data");
using (IEnumerator<BaseCachedColumn> enumerator = base.Columns.GetEnumerator())
{
BaseCachedColumn column;
FileData data;
Label_008F:
if (enumerator.MoveNext() || ((((uint) num) + ((uint) num)) > uint.MaxValue))
{
goto Label_011D;
}
goto Label_0021;
Label_00BD:
if (column.Input)
{
goto Label_00D8;
}
goto Label_008F;
Label_00C7:
if (0 == 0)
{
}
goto Label_008F;
Label_00CC:
if (column is FileData)
{
goto Label_00BD;
}
goto Label_00C7;
Label_00D8:
data = (FileData) column;
string str = dcsv.Get(data.Index);
num2 = base.InputFormat.Parse(str);
data.Data[num] = num2;
goto Label_008F;
Label_0111:
if (0 == 0)
{
goto Label_00CC;
}
goto Label_00BD;
Label_011D:
column = enumerator.Current;
goto Label_0111;
}
}
finally
{
base.ReportDone("Reading data");
if (dcsv != null)
{
dcsv.Close();
}
}
}
示例10: Execute
/// <summary>
/// Program entry point.
/// </summary>
/// <param name="app">Holds arguments and other info.</param>
public void Execute(IExampleInterface app)
{
ErrorCalculation.Mode = ErrorCalculationMode.RMS;
// Download the data that we will attempt to model.
string filename = DownloadData(app.Args);
// Define the format of the data file.
// This area will change, depending on the columns and
// format of the file that you are trying to model.
var format = new CSVFormat('.', ' '); // decimal point and
// space separated
IVersatileDataSource source = new CSVDataSource(filename, true,
format);
var data = new VersatileMLDataSet(source);
data.NormHelper.Format = format;
ColumnDefinition columnSSN = data.DefineSourceColumn("SSN",
ColumnType.Continuous);
ColumnDefinition columnDEV = data.DefineSourceColumn("DEV",
ColumnType.Continuous);
// Analyze the data, determine the min/max/mean/sd of every column.
data.Analyze();
// Use SSN & DEV to predict SSN. For time-series it is okay to have
// SSN both as
// an input and an output.
data.DefineInput(columnSSN);
data.DefineInput(columnDEV);
data.DefineOutput(columnSSN);
// Create feedforward neural network as the model type.
// MLMethodFactory.TYPE_FEEDFORWARD.
// You could also other model types, such as:
// MLMethodFactory.SVM: Support Vector Machine (SVM)
// MLMethodFactory.TYPE_RBFNETWORK: RBF Neural Network
// MLMethodFactor.TYPE_NEAT: NEAT Neural Network
// MLMethodFactor.TYPE_PNN: Probabilistic Neural Network
var model = new EncogModel(data);
model.SelectMethod(data, MLMethodFactory.TypeFeedforward);
// Send any output to the console.
model.Report = new ConsoleStatusReportable();
// Now normalize the data. Encog will automatically determine the
// correct normalization
// type based on the model you chose in the last step.
data.Normalize();
// Set time series.
data.LeadWindowSize = 1;
data.LagWindowSize = WindowSize;
// Hold back some data for a final validation.
// Do not shuffle the data into a random ordering. (never shuffle
// time series)
// Use a seed of 1001 so that we always use the same holdback and
// will get more consistent results.
model.HoldBackValidation(0.3, false, 1001);
// Choose whatever is the default training type for this model.
model.SelectTrainingType(data);
// Use a 5-fold cross-validated train. Return the best method found.
// (never shuffle time series)
var bestMethod = (IMLRegression) model.Crossvalidate(5,
false);
// Display the training and validation errors.
Console.WriteLine(@"Training error: "
+ model.CalculateError(bestMethod,
model.TrainingDataset));
Console.WriteLine(@"Validation error: "
+ model.CalculateError(bestMethod,
model.ValidationDataset));
// Display our normalization parameters.
NormalizationHelper helper = data.NormHelper;
Console.WriteLine(helper.ToString());
// Display the final model.
Console.WriteLine(@"Final model: " + bestMethod);
// Loop over the entire, original, dataset and feed it through the
// model. This also shows how you would process new data, that was
// not part of your training set. You do not need to retrain, simply
// use the NormalizationHelper class. After you train, you can save
// the NormalizationHelper to later normalize and denormalize your
// data.
source.Close();
var csv = new ReadCSV(filename, true, format);
var line = new String[2];
// Create a vector to hold each time-slice, as we build them.
// These will be grouped together into windows.
//.........这里部分代码省略.........
示例11: ReadFile
/// <summary>
/// Read the CSV file.
/// </summary>
private void ReadFile()
{
ReadCSV csv = null;
try
{
csv = new ReadCSV(InputFilename.ToString(),
ExpectInputHeaders, Format);
ResetStatus();
int row = 0;
while (csv.Next() && !ShouldStop())
{
UpdateStatus("Reading data");
foreach (BaseCachedColumn column in Columns)
{
if (column is FileData)
{
if (column.Input)
{
var fd = (FileData) column;
String str = csv.Get(fd.Index);
double d = Format.Parse(str);
fd.Data[row] = d;
}
}
}
row++;
}
}
finally
{
ReportDone("Reading data");
if (csv != null)
{
csv.Close();
}
}
}
示例12: Normalize
//.........这里部分代码省略.........
}
if (((uint) num) >= 0)
{
goto Label_007E;
}
goto Label_004F;
Label_00E1:
this.x6c260f7f6142106c(writer);
Label_00E8:
base.ResetStatus();
if (0 == 0)
{
num = this._x554f16462d8d4675.DetermineTotalColumns();
}
goto Label_0063;
Label_0105:
base.UpdateStatus(false);
goto Label_00A7;
Label_0110:
file.Delete();
writer = new StreamWriter(file.OpenWrite());
if (!base.ProduceOutputHeaders)
{
goto Label_00E8;
}
goto Label_00E1;
}
catch (IOException exception)
{
throw new QuantError(exception);
}
finally
{
base.ReportDone(false);
goto Label_01B0;
Label_014E:
if ((((uint) num) - ((uint) num)) > uint.MaxValue)
{
goto Label_0173;
}
if (0 == 0)
{
goto Label_01D5;
}
goto Label_01B0;
Label_016E:
if (writer != null)
{
goto Label_019B;
}
goto Label_014E;
Label_0173:
if (2 == 0)
{
goto Label_016E;
}
if ((((uint) num) - ((uint) num)) < 0)
{
goto Label_0173;
}
goto Label_01D5;
Label_0196:
if (csv != null)
{
goto Label_01B7;
}
goto Label_016E;
Label_019B:
try
{
writer.Close();
}
catch (Exception exception3)
{
EncogLogging.Log(exception3);
}
goto Label_01D5;
Label_01B0:
if (1 != 0)
{
goto Label_0196;
}
Label_01B7:
try
{
csv.Close();
}
catch (Exception exception2)
{
EncogLogging.Log(exception2);
}
goto Label_016E;
if (0 == 0)
{
goto Label_016E;
}
goto Label_014E;
Label_01D5:;
}
}
示例13: Process
/// <summary>
/// Process the input file.
/// </summary>
///
/// <param name="outputFile">The output file to write to.</param>
public void Process(FileInfo outputFile)
{
var csv = new ReadCSV(InputFilename.ToString(),
ExpectInputHeaders, InputFormat);
StreamWriter tw = PrepareOutputFile(outputFile);
_filteredCount = 0;
ResetStatus();
while (csv.Next() && !ShouldStop())
{
UpdateStatus(false);
var row = new LoadedRow(csv);
if (ShouldProcess(row))
{
WriteRow(tw, row);
_filteredCount++;
}
}
ReportDone(false);
tw.Close();
csv.Close();
}
示例14: Process
/// <summary>
/// Perform the analysis.
/// </summary>
/// <param name="target">The Encog analyst object to analyze.</param>
public void Process(EncogAnalyst target)
{
int count = 0;
CSVFormat csvFormat = ConvertStringConst
.ConvertToCSVFormat(_format);
var csv = new ReadCSV(_filename, _headers, csvFormat);
// pass one, calculate the min/max
while (csv.Next())
{
if (_fields == null)
{
GenerateFields(csv);
}
for (int i = 0; i < csv.ColumnCount; i++)
{
if (_fields != null)
{
_fields[i].Analyze1(csv.Get(i));
}
}
count++;
}
if (count == 0)
{
throw new AnalystError("Can't analyze file, it is empty.");
}
if (_fields != null)
{
foreach (AnalyzedField field in _fields)
{
field.CompletePass1();
}
}
csv.Close();
// pass two, standard deviation
csv = new ReadCSV(_filename, _headers, csvFormat);
while (csv.Next())
{
for (int i = 0; i < csv.ColumnCount; i++)
{
if (_fields != null)
{
_fields[i].Analyze2(csv.Get(i));
}
}
}
if (_fields != null)
{
foreach (AnalyzedField field in _fields)
{
field.CompletePass2();
}
}
csv.Close();
String str = _script.Properties.GetPropertyString(
ScriptProperties.SetupConfigAllowedClasses) ?? "";
bool allowInt = str.Contains("int");
bool allowReal = str.Contains("real")
|| str.Contains("double");
bool allowString = str.Contains("string");
// remove any classes that did not qualify
foreach (AnalyzedField field in _fields)
{
if (field.Class)
{
if (!allowInt && field.Integer)
{
field.Class = false;
}
if (!allowString && (!field.Integer && !field.Real))
{
field.Class = false;
}
if (!allowReal && field.Real && !field.Integer)
{
field.Class = false;
}
}
}
//.........这里部分代码省略.........
示例15: Process
/// <summary>
/// Process and balance the data.
/// </summary>
/// <param name="outputFile">The output file to write data to.</param>
/// <param name="targetField"></param>
/// <param name="countPer">The desired count per class.</param>
public void Process(FileInfo outputFile, int targetField,
int countPer)
{
ValidateAnalyzed();
StreamWriter tw = PrepareOutputFile(outputFile);
_counts = new Dictionary<String, Int32>();
var csv = new ReadCSV(InputFilename.ToString(),
ExpectInputHeaders, Format);
ResetStatus();
while (csv.Next() && !ShouldStop())
{
var row = new LoadedRow(csv);
UpdateStatus(false);
String key = row.Data[targetField];
int count;
if (!_counts.ContainsKey(key))
{
count = 0;
}
else
{
count = _counts[key];
}
if (count < countPer)
{
WriteRow(tw, row);
count++;
}
_counts[key] = count;
}
ReportDone(false);
csv.Close();
tw.Close();
}