当前位置: 首页>>代码示例>>C#>>正文


C# Seq类代码示例

本文整理汇总了C#中Seq的典型用法代码示例。如果您正苦于以下问题:C# Seq类的具体用法?C# Seq怎么用?C# Seq使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


Seq类属于命名空间,在下文中一共展示了Seq类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Emit

 public void Emit()
 {
     if (Trace.Flavor == TraceFlavor.Remainder)
     {
         foreach (var kv in Trace.AssemblyMap)
         {
             var compiler = new AssemblyCompiler(this, kv.Value);
             compiler.Emit(null);
         }
     }
     else
     {
         var rootEnv = Env.Global.Environment();
         var body = new Seq<JST.Statement>();
         body.Add(JST.Statement.Var(RootId, new JST.Identifier(Env.Root).ToE()));
         foreach (var nm in rootEnv.AllLoadedAssembliesInLoadOrder().Where(Trace.AssemblyMap.ContainsKey))
         {
             var compiler = new AssemblyCompiler(this, Trace.AssemblyMap[nm]);
             compiler.Emit(body);
         }
         var program = new JST.Program
             (new JST.Statements
                  (new JST.ExpressionStatement
                       (new JST.StatementsPseudoExpression(new JST.Statements(body), null))));
         var fileName = Path.Combine(Env.OutputDirectory, Trace.Name + ".js");
         program.ToFile(fileName, Env.PrettyPrint);
         Env.Log(new GeneratedJavaScriptFile("trace '" + Trace.Name + "'", fileName));
     }
 }
开发者ID:modulexcite,项目名称:IL2JS,代码行数:29,代码来源:TraceCompiler.cs

示例2: HOGDescriptor

        /// <summary>
        /// Create a new HOGDescriptor using the specific parameters
        /// </summary>
        public HOGDescriptor(
            Size winSize,
            Size blockSize,
            Size blockStride,
            Size cellSize,
            int nbins,
            int derivAperture,
            double winSigma,
            double L2HysThreshold,
            bool gammaCorrection)
        {
            _ptr = CvHOGDescriptorCreate(
            ref winSize,
            ref blockSize,
            ref blockStride,
            ref cellSize,
            nbins,
            derivAperture,
            winSigma,
            0,
            L2HysThreshold,
            gammaCorrection);

             _rectStorage = new MemStorage();
             _rectSeq = new Seq<Rectangle>(_rectStorage);
        }
开发者ID:samuto,项目名称:UnityOpenCV,代码行数:29,代码来源:HOGDescriptor.cs

示例3: BuildTypeExpression

        // Complete a first-kinded type structure. If type definition is higher kinded, this will
        // complete an instance of the type at the type arguments. Otherwise, this will complete
        // the type definition itself.
        private void BuildTypeExpression(Seq<JST.Statement> body, JST.Expression lhs)
        {
            TypeCompEnv.BindUsage(body, CollectPhase1Usage(), TypePhase.Id);

            // TODO: Replace with prototype
            body.Add(JST.Statement.DotCall(RootId.ToE(), Constants.RootSetupTypeDefaults, TypeId.ToE()));

            EmitBaseAndSupertypes(body, lhs);
            EmitDefaultConstructor(body, lhs);
            EmitMemberwiseClone(body, lhs);
            EmitClone(body, lhs);
            EmitDefaultValue(body, lhs);
            EmitStaticMethods(body, lhs);
            EmitConstructObjectAndInstanceMethods(body, lhs);
            EmitVirtualAndInterfaceMethodRedirectors(body, lhs);
            EmitSetupType(body, lhs);
            EmitUnbox(body, lhs);
            EmitBox(body, lhs);
            EmitUnboxAny(body, lhs);
            EmitConditionalDeref(body, lhs);
            EmitIsValue(body, lhs);
            EmitEquals(body, lhs);
            EmitHash(body, lhs);
            EmitInterop(body, lhs);
        }
开发者ID:modulexcite,项目名称:IL2JS,代码行数:28,代码来源:TypeCompiler.cs

示例4: GpuHOGDescriptor

        /// <summary>
        /// Create a new HOGDescriptor using the specific parameters
        /// </summary>
        /// <param name="blockSize">Block size in cells. Only (2,2) is supported for now.</param>
        /// <param name="cellSize">Cell size. Only (8, 8) is supported for now.</param>
        /// <param name="blockStride">Block stride. Must be a multiple of cell size.</param>
        /// <param name="gammaCorrection">Do gamma correction preprocessing or not.</param>
        /// <param name="L2HysThreshold">L2-Hys normalization method shrinkage.</param>
        /// <param name="nbins">Number of bins. Only 9 bins per cell is supported for now.</param>
        /// <param name="nLevels">Maximum number of detection window increases.</param>
        /// <param name="winSigma">Gaussian smoothing window parameter.</param>
        /// <param name="winSize">Detection window size. Must be aligned to block size and block stride.</param>
        public GpuHOGDescriptor(
         Size winSize,
         Size blockSize,
         Size blockStride,
         Size cellSize,
         int nbins,
         double winSigma,
         double L2HysThreshold,
         bool gammaCorrection,
         int nLevels)
        {
            _ptr = gpuHOGDescriptorCreate(
            ref winSize,
            ref blockSize,
            ref blockStride,
            ref cellSize,
            nbins,
            winSigma,
            L2HysThreshold,
            gammaCorrection,
            nLevels);

             _rectStorage = new MemStorage();
             _rectSeq = new Seq<Rectangle>(_rectStorage);
        }
开发者ID:genecyber,项目名称:PredatorCV,代码行数:37,代码来源:GpuHOGDescriptor.cs

示例5: HOGDescriptor

 /// <summary>
 /// Create a new HOGDescriptor
 /// </summary>
 public HOGDescriptor()
 {
    _ptr = CvHOGDescriptorCreateDefault();
    _rectStorage = new MemStorage();
    _rectSeq = new Seq<Rectangle>(_rectStorage);
    _vector = new VectorOfFloat();
 }
开发者ID:Rustemt,项目名称:emgu_openCV,代码行数:10,代码来源:HOGDescriptor.cs

示例6: GetDefaultPeopleDetector

 /// <summary>
 /// Return the default people detector
 /// </summary>
 /// <returns>the default people detector</returns>
 public static float[] GetDefaultPeopleDetector()
 {
     using (MemStorage stor = new MemStorage())
      {
     Seq<float> desc = new Seq<float>(stor);
     CvHOGDescriptorPeopleDetectorCreate(desc);
     return desc.ToArray();
      }
 }
开发者ID:samuto,项目名称:UnityOpenCV,代码行数:13,代码来源:HOGDescriptor.cs

示例7: DetectKeyPoints

 /// <summary>
 /// Detect STAR key points from the image
 /// </summary>
 /// <param name="image">The image to extract key points from</param>
 /// <returns>The STAR key points of the image</returns>
 public MKeyPoint[] DetectKeyPoints(Image<Gray, Byte> image)
 {
     using (MemStorage stor = new MemStorage())
      {
     Seq<MKeyPoint> seq = new Seq<MKeyPoint>(stor);
     CvStarDetectorDetectKeyPoints(ref this, image, seq.Ptr);
     return seq.ToArray();
      }
 }
开发者ID:samuto,项目名称:UnityOpenCV,代码行数:14,代码来源:StarDetector.cs

示例8: HoughLineTransform

 /// <summary>
 /// Hough Line Transform, as in OpenCV (EmguCv does not wrap this function as it should be)
 /// </summary>
 /// <param name="img">Binary image</param>
 /// <param name="type">type of hough transform</param>
 /// <param name="threshold">how many votes is needed to accept line</param>
 /// <returns>Lines in theta/rho format</returns>
 public static PointF[] HoughLineTransform(Image<Gray, byte> img, Emgu.CV.CvEnum.HOUGH_TYPE type, int threshold)
 {
     using (MemStorage stor = new MemStorage())
     {
         IntPtr linePtr = CvInvoke.cvHoughLines2(img, stor.Ptr, type, 5, Math.PI / 180 * 15, threshold, 0, 0);
         Seq<PointF> seq = new Seq<PointF>(linePtr, stor);
         return seq.ToArray(); ;
     }
 }
开发者ID:rAum,项目名称:auton_net,代码行数:16,代码来源:VisionToolkit.cs

示例9: GetModelPoints

 /// <summary>
 /// Get the model points stored in this detector
 /// </summary>
 /// <returns>The model points stored in this detector</returns>
 public MKeyPoint[] GetModelPoints()
 {
     using (MemStorage stor = new MemStorage())
      {
     Seq<MKeyPoint> modelPoints = new Seq<MKeyPoint>(stor);
     CvPlanarObjectDetectorGetModelPoints(_ptr, modelPoints);
     return modelPoints.ToArray();
      }
 }
开发者ID:samuto,项目名称:UnityOpenCV,代码行数:13,代码来源:PlanarObjectDetector.cs

示例10: Detect

 /// <summary>
 /// Detect planar object from the specific image
 /// </summary>
 /// <param name="image">The image where the planar object will be detected</param>
 /// <param name="h">The homography matrix which will be updated</param>
 /// <returns>The four corners of the detected region</returns>
 public PointF[] Detect(Image<Gray, Byte> image, HomographyMatrix h)
 {
     using (MemStorage stor = new MemStorage())
      {
     Seq<PointF> corners = new Seq<PointF>(stor);
     CvPlanarObjectDetectorDetect(_ptr, image, h, corners);
     return corners.ToArray();
      }
 }
开发者ID:samuto,项目名称:UnityOpenCV,代码行数:15,代码来源:PlanarObjectDetector.cs

示例11: DetectKeyPoints

 /// <summary>
 /// Detect the Fast keypoints from the image
 /// </summary>
 /// <param name="image">The image to extract keypoints from</param>
 /// <returns>The array of fast keypoints</returns>
 public MKeyPoint[] DetectKeyPoints(Image<Gray, byte> image)
 {
    using (MemStorage stor = new MemStorage())
    {
       Seq<MKeyPoint> keypoints = new Seq<MKeyPoint>(stor);
       CvInvoke.CvFASTKeyPoints(image, keypoints, Threshold, NonmaxSupression);
       return keypoints.ToArray();
    }
 }
开发者ID:Rustemt,项目名称:emgu_openCV,代码行数:14,代码来源:FastDetector.cs

示例12: DetectKeyPoints

 /// <summary>
 /// Detect the Lepetit keypoints from the image
 /// </summary>
 /// <param name="image">The image to extract Lepetit keypoints</param>
 /// <param name="maxCount">The maximum number of keypoints to be extracted</param>
 /// <param name="scaleCoords">Indicates if the coordinates should be scaled</param>
 /// <returns>The array of Lepetit keypoints</returns>
 public MKeyPoint[] DetectKeyPoints(Image<Gray, Byte> image, int maxCount, bool scaleCoords)
 {
     using (MemStorage stor = new MemStorage())
      {
     Seq<MKeyPoint> seq = new Seq<MKeyPoint>(stor);
     CvLDetectorDetectKeyPoints(ref this, image, seq.Ptr, maxCount, scaleCoords);
     return seq.ToArray();
      }
 }
开发者ID:samuto,项目名称:UnityOpenCV,代码行数:16,代码来源:LDetector.cs

示例13: DetectMultiScale

        /// <summary>
        /// Finds rectangular regions in the given image that are likely to contain objects the cascade has been trained for and returns those regions as a sequence of rectangles. 
        /// The function scans the image several times at different scales. Each time it considers overlapping regions in the image. 
        /// It may also apply some heuristics to reduce number of analyzed regions, such as Canny prunning. 
        /// After it has proceeded and collected the candidate rectangles (regions that passed the classifier cascade), it groups them and returns a sequence of average rectangles for each large enough group. 
        /// </summary>
        /// <param name="image">The image where the objects are to be detected from</param>
        /// <param name="scaleFactor">The factor by which the search window is scaled between the subsequent scans, for example, 1.1 means increasing window by 10%</param>
        /// <param name="minNeighbors">Minimum number (minus 1) of neighbor rectangles that makes up an object. All the groups of a smaller number of rectangles than min_neighbors-1 are rejected. If min_neighbors is 0, the function does not any grouping at all and returns all the detected candidate rectangles, which may be useful if the user wants to apply a customized grouping procedure</param>
        /// <param name="minSize">Minimum window size. Use Size.Empty for default, where it is set to the size of samples the classifier has been trained on (~20x20 for face detection)</param>
        /// <param name="maxSize">Maxumum window size. Use Size.Empty for default, where the parameter will be ignored.</param>
        /// <returns>The objects detected, one array per channel</returns>
        public Rectangle[] DetectMultiScale(Image<Gray, Byte> image, double scaleFactor, int minNeighbors, Size minSize, Size maxSize)
        {
            using (MemStorage stor = new MemStorage())
             {
            Seq<Rectangle> rectangles = new Seq<Rectangle>(stor);

            CvInvoke.CvCascadeClassifierDetectMultiScale(_ptr, image, rectangles, scaleFactor, minNeighbors, 0, minSize, maxSize);
            return rectangles.ToArray();
             }
        }
开发者ID:fajoy,项目名称:RTSPExample,代码行数:22,代码来源:CascadeClassifier.cs

示例14: Detect

 /// <summary>
 /// Find rectangular regions in the given image that are likely to contain objects and corresponding confidence levels
 /// </summary>
 /// <param name="image">The image to detect objects in</param>
 /// <param name="overlapThreshold">Threshold for the non-maximum suppression algorithm, Use default value of 0.5</param>
 /// <returns>Array of detected objects</returns>
 public MCvObjectDetection[] Detect(Image<Bgr, Byte> image, float overlapThreshold)
 {
     using (MemStorage stor = new MemStorage())
      {
     IntPtr seqPtr = CvInvoke.cvLatentSvmDetectObjects(image, Ptr, stor, overlapThreshold, -1);
     if (seqPtr == IntPtr.Zero)
        return new MCvObjectDetection[0];
     Seq<MCvObjectDetection> seq = new Seq<MCvObjectDetection>(seqPtr, stor);
     return seq.ToArray();
      }
 }
开发者ID:wendellinfinity,项目名称:ShoulderSurferAlert,代码行数:17,代码来源:LatentSvmDetector.cs

示例15: ConvexHull

        /// <summary>
        /// Finds convex hull of 2D point set using Sklansky's algorithm
        /// </summary>
        /// <param name="points">The points to find convex hull from</param>
        /// <param name="storage">the storage used by the resulting sequence</param>
        /// <param name="orientation">The orientation of the convex hull</param>
        /// <returns>The convex hull of the points</returns>
        public static Seq<PointF> ConvexHull(PointF[] points, MemStorage storage, CvEnum.ORIENTATION orientation)
        {
            IntPtr seq = Marshal.AllocHGlobal(StructSize.MCvSeq);
             IntPtr block = Marshal.AllocHGlobal(StructSize.MCvSeqBlock);
             GCHandle handle = GCHandle.Alloc(points, GCHandleType.Pinned);
             CvInvoke.cvMakeSeqHeaderForArray(
            CvInvoke.CV_MAKETYPE((int)CvEnum.MAT_DEPTH.CV_32F, 2),
            StructSize.MCvSeq,
            StructSize.PointF,
            handle.AddrOfPinnedObject(),
            points.Length,
            seq,
            block);

             Seq<PointF> convexHull = new Seq<PointF>(CvInvoke.cvConvexHull2(seq, storage.Ptr, orientation, 1), storage);
             handle.Free();
             Marshal.FreeHGlobal(seq);
             Marshal.FreeHGlobal(block);
             return convexHull;
        }
开发者ID:wendellinfinity,项目名称:ShoulderSurferAlert,代码行数:27,代码来源:PointCollection.cs


注:本文中的Seq类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。