本文整理汇总了C#中Scientrace.lineThroughPlane方法的典型用法代码示例。如果您正苦于以下问题:C# Scientrace.lineThroughPlane方法的具体用法?C# Scientrace.lineThroughPlane怎么用?C# Scientrace.lineThroughPlane使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Scientrace
的用法示例。
在下文中一共展示了Scientrace.lineThroughPlane方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: overlapsWithPlane
/// <summary>
/// Returns true if two Plane-instances cover the same area
/// </summary>
/// <returns><c>true</c> if planes overlap, <c>false</c> otherwise.</returns>
/// <param name="anotherPlane">the other plane.</param>
public bool overlapsWithPlane(Scientrace.PlaneBorder anotherPlane)
{
if ((this.allowedDirNormal.normalized().toVector() - anotherPlane.allowedDirNormal.normalized().toVector()).length > MainClass.SIGNIFICANTLY_SMALL)
return false; //Normals differ significantly. Nuff said.
// Normals are considered equal. Are the planes locations in space?
Scientrace.Location loc1 = (this.lineThroughPlane(new Line(Location.ZeroLoc(), this.getNormal())));
Scientrace.Location loc2 = (anotherPlane.lineThroughPlane(new Line(Location.ZeroLoc(), this.getNormal())));
// if these locations are considered the same, the planes overlap.
return ((loc1 - loc2).length < MainClass.SIGNIFICANTLY_SMALL);
}
示例2: getIntersectionLineWith
/// <summary>
/// Creates a line starting at the projection of this.loc on the intersection between this and another Plane.
/// The direction of the line is that of the crossproduct of this.normal and anotherPlane.normal.
/// </summary>
/// <returns>A line along the intersection of this and anotherPlane, returns "null" if two planes are significantly parallel</returns>
/// <param name="anotherPlane">A plane to calculate the intersection with</param>
public Scientrace.Line getIntersectionLineWith(Scientrace.Plane anotherPlane)
{
Scientrace.UnitVector n1, n2;
n1 = this.getNorm();
n2 = anotherPlane.getNorm();
Vector tw = n1.crossProduct(n2);
if (tw.length < MainClass.SIGNIFICANTLY_SMALL) {
//Console.WriteLine("WARNING: two planes do not intersect since they are parallel.");
return null;
}
UnitVector intersection_direction = tw.tryToUnitVector();
Vector tl1 = n1.crossProduct(intersection_direction);
if (tl1.length == 0)
throw new Exception("Plane.getIntersectionLineWith/l1.length can never be zero. If this happens, notify the [email protected] about this..."+this.ToString()+anotherPlane.ToString());
// l1 lies in "this" plane, and is orthogonal to the intersectionline-direction
UnitVector l1 = tl1.tryToUnitVector();
// where l1, starting at this.loc, meets anotherPlane we found a location on the intersectionline.
Scientrace.Location retLoc = anotherPlane.lineThroughPlane(new Line(this.loc, l1));
if (retLoc == null) {
Console.WriteLine("WARNING: retLoc == null; l1: "+l1.ToString()+" ; anotherPlane:"+anotherPlane.getNorm().ToString());
return null;
}
return new Line(retLoc, intersection_direction);
}