当前位置: 首页>>代码示例>>C#>>正文


C# Range.AddAttribute方法代码示例

本文整理汇总了C#中Range.AddAttribute方法的典型用法代码示例。如果您正苦于以下问题:C# Range.AddAttribute方法的具体用法?C# Range.AddAttribute怎么用?C# Range.AddAttribute使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Range的用法示例。


在下文中一共展示了Range.AddAttribute方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Regression

        //public int[] Classification(Vector[] features, int[] labels)
        //{
        //}
        public double[] Regression(Vector[] features, double[] values)
        {
            var wMeans = Variable.Vector(Vector.Zero(features[0].Count).ToArray());
            var wPrecision = Variable.WishartFromShapeAndRate(100, PositiveDefiniteMatrix.IdentityScaledBy(features[0].Count, 0.01));
            var w = Variable.VectorGaussianFromMeanAndPrecision(wMeans, wPrecision).Named("w");
            var numItems = Variable.New<int>().Named("numItems");
            var i = new Range(numItems).Named("i");
            i.AddAttribute(new Sequential());

            var noisePrecision = Variable.New<double>().Named("noisePrecision");

            var x = Variable.Array<Vector>(i).Named("x");
            var y = Variable.Array<double>(i).Named("y");

            using (Variable.ForEach(i))
            {
                y[i] = Variable.GaussianFromMeanAndPrecision(Variable.InnerProduct(w, x[i]), noisePrecision);
            }

            numItems.ObservedValue = features.Length;
            x.ObservedValue = features;
            y.ObservedValue = values;

            var engine = new InferenceEngine();
            engine.Compiler.UseSerialSchedules = true;
            engine.ShowProgress = false;
            var wPosterior = engine.Infer<VectorGaussian>(w);
            y.ClearObservedValue();
            w.ObservedValue = wPosterior.GetMean();
            var inferredValues = engine.Infer<IList<Gaussian>>(y);
            return inferredValues.Select(v => v.GetMean()).ToArray();
        }
开发者ID:adamgoral,项目名称:infernethol,代码行数:35,代码来源:BayesPointMachineModel.cs

示例2: Model

			public Model()
			{
				// Classes.
				numClasses = Variable.New<int>().Named("numClasses");
				c = new Range(numClasses).Named("c");

				// Items.
				numItems = Variable.New<int>().Named("numItems");
				i = new Range(numItems).Named("i");
				i.AddAttribute(new Sequential());

				// The prior distribution for weight vector for each class. When
				// <see cref="Test"/> is called, this is set to the posterior weight
				// distributions from <see cref="Train"/>.
				wPrior = Variable.Array<VectorGaussian>(c).Named("wPrior");

				// The weight vector for each class.
				w = Variable.Array<Vector>(c).Named("w");
				w[c] = Variable<Vector>.Random(wPrior[c]);

				noisePrecision = Variable.New<double>().Named("noisePrecision");

				// Arrays of <see cref="Vector"/>-valued items (feature vectors) and integer labels.
				x = Variable.Array<Vector>(i).Named("x");
				y = Variable.Array<int>(i).Named("y");

				// For all items...
				using (Variable.ForEach(i))
				{
					// ...compute the score of this item across all classes...
					score = BPMUtils.ComputeClassScores(w, x[i], noisePrecision);
					y[i] = Variable.DiscreteUniform(c);

					// ... and constrain the output.
					BPMUtils.ConstrainMaximum(y[i], score);
				}

				// Inference engine settings (EP).
				engine.Compiler.UseSerialSchedules = true;
				engine.ShowProgress = false;
			}
开发者ID:prgoodwin,项目名称:HabilisX,代码行数:41,代码来源:BPM.cs

示例3: Run

		public void Run()
		{
			InferenceEngine engine = new InferenceEngine();
			if (!(engine.Algorithm is ExpectationPropagation))
			{
				Console.WriteLine("This example only runs with Expectation Propagation");
				return;
			} 
			
			Rand.Restart(0);

			int nQuestions = 100;
			int nSubjects = 40;
			int nChoices = 4;
			Gaussian abilityPrior = new Gaussian(0, 1);
			Gaussian difficultyPrior = new Gaussian(0, 1);
			Gamma discriminationPrior = Gamma.FromShapeAndScale(5, 1);

			double[] trueAbility, trueDifficulty, trueDiscrimination;
			int[] trueTrueAnswer;
			int[][] data = Sample(nSubjects, nQuestions, nChoices, abilityPrior, difficultyPrior, discriminationPrior,
				out trueAbility, out trueDifficulty, out trueDiscrimination, out trueTrueAnswer);

			Range question = new Range(nQuestions).Named("question");
			Range subject = new Range(nSubjects).Named("subject");
			Range choice = new Range(nChoices).Named("choice");
			var response = Variable.Array(Variable.Array<int>(question), subject).Named("response");
			response.ObservedValue = data;

			var ability = Variable.Array<double>(subject).Named("ability");
			ability[subject] = Variable.Random(abilityPrior).ForEach(subject);
			var difficulty = Variable.Array<double>(question).Named("difficulty");
			difficulty[question] = Variable.Random(difficultyPrior).ForEach(question);
			var discrimination = Variable.Array<double>(question).Named("discrimination");
			discrimination[question] = Variable.Random(discriminationPrior).ForEach(question);
			var trueAnswer = Variable.Array<int>(question).Named("trueAnswer");
			trueAnswer[question] = Variable.DiscreteUniform(nChoices).ForEach(question);

			using (Variable.ForEach(subject)) {
				using (Variable.ForEach(question)) {
					var advantage = (ability[subject] - difficulty[question]).Named("advantage");
					var advantageNoisy = Variable.GaussianFromMeanAndPrecision(advantage, discrimination[question]).Named("advantageNoisy");
					var correct = (advantageNoisy > 0).Named("correct");
					using (Variable.If(correct))
						response[subject][question] = trueAnswer[question];
					using (Variable.IfNot(correct))
						response[subject][question] = Variable.DiscreteUniform(nChoices);
				}
			}

			engine.NumberOfIterations = 5;
			subject.AddAttribute(new Sequential());  // needed to get stable convergence
			engine.Compiler.UseSerialSchedules = true;
			if (false) {
				// set this to do majority voting
				ability.ObservedValue = Util.ArrayInit(nSubjects, i => 0.0);
				difficulty.ObservedValue = Util.ArrayInit(nQuestions, i => 0.0);
				discrimination.ObservedValue = Util.ArrayInit(nQuestions, i => 1.0);
			}
			var trueAnswerPosterior = engine.Infer<IList<Discrete>>(trueAnswer);
			int numCorrect = 0;
			for (int q = 0; q < nQuestions; q++) {
				int bestGuess = trueAnswerPosterior[q].GetMode();
				if (bestGuess == trueTrueAnswer[q]) numCorrect++;
			}
			double pctCorrect = 100.0*numCorrect/nQuestions;
			Console.WriteLine("{0}% TrueAnswers correct", pctCorrect.ToString("f0"));
			var difficultyPosterior = engine.Infer<IList<Gaussian>>(difficulty);
			for (int q = 0; q < Math.Min(nQuestions, 4); q++) {
				Console.WriteLine("difficulty[{0}] = {1} (sampled from {2})", q, difficultyPosterior[q], trueDifficulty[q].ToString("g2"));
			}
			var discriminationPosterior = engine.Infer<IList<Gamma>>(discrimination);
			for (int q = 0; q < Math.Min(nQuestions, 4); q++) {
				Console.WriteLine("discrimination[{0}] = {1} (sampled from {2})", q, discriminationPosterior[q], trueDiscrimination[q].ToString("g2"));
			}
			var abilityPosterior = engine.Infer<IList<Gaussian>>(ability);
			for (int s = 0; s < Math.Min(nSubjects, 4); s++) {
				Console.WriteLine("ability[{0}] = {1} (sampled from {2})", s, abilityPosterior[s], trueAbility[s].ToString("g2"));
			}
		}
开发者ID:prgoodwin,项目名称:HabilisX,代码行数:80,代码来源:DifficultyAbility.cs

示例4: Model

			public Model(SharedVariableArray<Vector> w, Range c, int numChunks)
			{
				// Items.
				numItems = Variable.New<int>().Named("numItems");
				i = new Range(numItems).Named("i");
				i.AddAttribute(new Sequential());
	
				// The model identifier for the shared variables.
				model = new MicrosoftResearch.Infer.Models.Model(numChunks).Named("model");
				// The weight vector for each submodel.
				wModel = w.GetCopyFor(model).Named("wModel");

				noisePrecision = Variable.New<double>().Named("noisePrecision");

				// Arrays of <see cref="Vector"/>-valued items (feature vectors) and integer labels.
				x = Variable.Array<Vector>(i).Named("x");
				y = Variable.Array<int>(i).Named("y");

				// For all items...
				using (Variable.ForEach(i))
				{
					// ...compute the score of this item across all classes...
					score = BPMUtils.ComputeClassScores(wModel, x[i], noisePrecision);
					y[i] = Variable.DiscreteUniform(c);

					// ... and constrain the output.
					BPMUtils.ConstrainMaximum(y[i], score);
				}

				// Inference engine settings (EP).
				engine.Compiler.UseSerialSchedules = true;
				engine.ShowProgress = false;
			}
开发者ID:prgoodwin,项目名称:HabilisX,代码行数:33,代码来源:BPMShared.cs

示例5: Model

			public Model()
			{
				// Classes.
				numClasses = Variable.New<int>().Named("numClasses");
				c = new Range(numClasses).Named("c");

				// Features.
				numFeatures = Variable.New<int>().Named("numFeatures");
				f = new Range(numFeatures).Named("f");

				// Items.
				numItems = Variable.New<int>().Named("numItems");
				i = new Range(numItems).Named("i");
				i.AddAttribute(new Sequential());

				// Features per item.
				numFeaturesPerItem = Variable.Array<int>(i).Named("numFeaturesPerItem");
				fItem = new Range(numFeaturesPerItem[i]).Named("fItem");

				// The prior distribution for weight vector for each class. When
				// <see cref="Test"/> is called, this is set to the posterior weight
				// distributions from <see cref="Train"/>.
				wPrior = Variable.Array(Variable.Array<Gaussian>(f), c).Named("wPrior");

				// The weight vector for each class.
				w = Variable.Array(Variable.Array<double>(f), c).Named("w");
				w[c][f] = Variable<double>.Random(wPrior[c][f]);

				noisePrecision = Variable.New<double>().Named("noisePrecision");

				// Jagged array of feature values - each item is an array of data values 
				// whose indices are given by the corresponding indices[i].
				values = Variable.Array(Variable.Array<double>(fItem), i).Named("values");

				// Jagged array of indices for the items.
				indices = Variable.Array(Variable.Array<int>(fItem), i).Named("indices");

				// Labels.
				y = Variable.Array<int>(i).Named("y");

				// For all items...
				using (Variable.ForEach(i))
				{
					// ...compute the score of this item across all classes...
					score = BPMUtils.ComputeClassScores(w, values[i], indices[i], fItem, noisePrecision);
					y[i] = Variable.DiscreteUniform(c);

					// ...and constrain the output.
					BPMUtils.ConstrainMaximum(y[i], score);
				}

				// Inference engine settings (EP).
				engine.Compiler.UseSerialSchedules = true;
				engine.ShowProgress = false;
			}
开发者ID:prgoodwin,项目名称:HabilisX,代码行数:55,代码来源:BPMSparse.cs

示例6: Model

			public Model(ISharedVariableArray<VariableArray<double>, double[][]> w, Range c, int numChunks)
			{
				// Items.
				numItems = Variable.New<int>().Named("numItems");
				i = new Range(numItems).Named("i");
				i.AddAttribute(new Sequential());

				// Features per item.
				numFeaturesPerItem = Variable.Array<int>(i).Named("numFeaturesPerItem");
				fItem = new Range(numFeaturesPerItem[i]).Named("fItem");

				// The model identifier for the shared variables.
				model = new MicrosoftResearch.Infer.Models.Model(numChunks).Named("model");
				// The weight vector for each submodel.
				wModel = w.GetCopyFor(model).Named("wModel");

				noisePrecision = Variable.New<double>().Named("noisePrecision");

				// Jagged array of feature values - each item is an array of data values 
				// whose indices are given by the corresponding indices[i].
				values = Variable.Array(Variable.Array<double>(fItem), i).Named("values");

				// Jagged array of indices for the items.
				indices = Variable.Array(Variable.Array<int>(fItem), i).Named("indices");

				// Labels.
				y = Variable.Array<int>(i).Named("y");

				// For all items...
				using (Variable.ForEach(i))
				{
					// ...compute the score of this item across all classes...
					score = BPMUtils.ComputeClassScores(wModel, values[i], indices[i], fItem, noisePrecision);
					y[i] = Variable.DiscreteUniform(c);

					// ... and constrain the output.
					BPMUtils.ConstrainMaximum(y[i], score);
				}

				// Inference engine settings (EP).
				engine.Compiler.UseSerialSchedules = true;
				engine.ShowProgress = false;
			}
开发者ID:prgoodwin,项目名称:HabilisX,代码行数:43,代码来源:BPMSparseShared.cs


注:本文中的Range.AddAttribute方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。