本文整理汇总了C#中Position.checkers方法的典型用法代码示例。如果您正苦于以下问题:C# Position.checkers方法的具体用法?C# Position.checkers怎么用?C# Position.checkers使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Position
的用法示例。
在下文中一共展示了Position.checkers方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: MovePicker
/// Constructors of the MovePicker class. As arguments we pass information
/// to help it to return the (presumably) good moves first, to decide which
/// moves to return (in the quiescence search, for instance, we only want to
/// search captures, promotions and some checks) and how important good move
/// ordering is at the current node.
internal MovePicker(
Position p,
MoveT ttm,
Depth d,
HistoryStats h,
CounterMovesHistoryStats cmh,
MoveT cm,
StackArrayWrapper s)
{
endBadCaptures = new ExtMoveArrayWrapper(moves, _.MAX_MOVES - 1);
cur = new ExtMoveArrayWrapper(moves);
endMoves = new ExtMoveArrayWrapper(moves);
pos = p;
history = h;
counterMovesHistory = cmh;
ss = s;
countermove = cm;
depth = d;
Debug.Assert(d > Depth.DEPTH_ZERO);
stage = pos.checkers() != 0 ? Stages.EVASION : Stages.MAIN_SEARCH;
ttMove = ttm != 0 && pos.pseudo_legal(ttm) ? ttm : Move.MOVE_NONE;
endMoves += ttMove != Move.MOVE_NONE ? 1 : 0;
}
示例2: generate_castling
internal static ExtMoveArrayWrapper generate_castling(
CastlingRight Cr,
bool Checks,
bool Chess960,
Position pos,
ExtMoveArrayWrapper moveList,
ColorT us,
CheckInfo ci)
{
var KingSide = (Cr == CastlingRight.WHITE_OO || Cr == CastlingRight.BLACK_OO);
if (pos.castling_impeded(Cr) || !pos.can_castle(Cr))
{
return moveList;
}
// After castling, the rook and king final positions are the same in Chess960
// as they would be in standard chess.
var kfrom = pos.square(PieceType.KING, us);
var rfrom = pos.castling_rook_square(Cr);
var kto = Square.relative_square(us, KingSide ? Square.SQ_G1 : Square.SQ_C1);
var enemies = pos.pieces_Ct(Color.opposite(us));
Debug.Assert(pos.checkers() == 0);
var K = Chess960 ? kto > kfrom ? Square.DELTA_W : Square.DELTA_E : KingSide ? Square.DELTA_W : Square.DELTA_E;
for (var s = kto; s != kfrom; s += K)
{
if ((pos.attackers_to(s) & enemies) != 0)
{
return moveList;
}
}
// Because we generate only legal castling moves we need to verify that
// when moving the castling rook we do not discover some hidden checker.
// For instance an enemy queen in SQ_A1 when castling rook is in SQ_B1.
if (Chess960
&& ((Utils.attacks_bb_PtSBb(PieceType.ROOK, kto, Bitboard.XorWithSquare(pos.pieces(), rfrom))
& pos.pieces_CtPtPt(Color.opposite(us), PieceType.ROOK, PieceType.QUEEN)))!= 0)
{
return moveList;
}
var m = Move.make(MoveType.CASTLING, kfrom, rfrom);
if (Checks && !pos.gives_check(m, ci))
{
return moveList;
}
moveList.Add(m);
return moveList;
}
示例3: fenTest
public void fenTest()
{
Bitboards.init();
Position.init();
var fen1 = "r3k2r/p1ppqpb1/bn2pnp1/3PN3/1p2P3/2N2Q1p/PPPBBPPP/R3K2R w KQkq - 0 10";
var pos1 = new Position(fen1, false, null);
Assert.AreEqual(fen1, pos1.fen());
Assert.AreEqual(0x81598B11829602DD, pos1.st.key);
var fen2 = "2r3k1/1q1nbppp/r3p3/3pP3/pPpP4/P1Q2N2/2RN1PPP/2R4K b - b3 0 23";
var pos2 = new Position(fen2, false, null);
Assert.AreEqual(fen2, pos2.fen());
Assert.AreEqual(0xD76B6F24873CAD66, pos2.st.key);
var fen3 = "rnb1kbnr/pp1ppppp/2p5/q7/4P3/3P4/PPP2PPP/RNBQKBNR w KQkq - 1 3";
var pos3 = new Position(fen3, false, null);
Assert.AreEqual(fen3, pos3.fen());
Assert.AreEqual(0x139B22CF5565D5CEul, pos3.st.key);
var b = pos3.checkers();
Assert.AreEqual("a5", UCI.square(Utils.pop_lsb(ref b)));
}
示例4: GetValue
internal override ValueT GetValue(Position pos)
{
Debug.Assert(verify_material(pos, weakSide, Value.VALUE_ZERO, 0));
Debug.Assert(pos.checkers()==0); // Eval is never called when in check
// Stalemate detection with lone king
if (pos.side_to_move() == weakSide && new MoveList(GenType.LEGAL, pos).size() == 0)
{
return Value.VALUE_DRAW;
}
var winnerKSq = pos.square(PieceType.KING, strongSide);
var loserKSq = pos.square(PieceType.KING, weakSide);
var result = pos.non_pawn_material(strongSide)
+ pos.count(PieceType.PAWN, strongSide)*Value.PawnValueEg + PushToEdges[loserKSq]
+ PushClose[Utils.distance_Square(winnerKSq, loserKSq)];
if (pos.count(PieceType.QUEEN, strongSide) > 0 || pos.count(PieceType.ROOK, strongSide) > 0
|| (pos.count(PieceType.BISHOP, strongSide) > 0 && pos.count(PieceType.KNIGHT, strongSide) > 0)
|| (pos.count(PieceType.BISHOP, strongSide) > 1
&& Square.opposite_colors(
pos.square(PieceType.BISHOP, strongSide, 0),
pos.square(PieceType.BISHOP, strongSide, 1))))
{
result += Value.VALUE_KNOWN_WIN;
}
return strongSide == pos.side_to_move() ? result : -result;
}
示例5: search
// search<>() is the main search function for both PV and non-PV nodes and for
// normal and SplitPoint nodes. When called just after a split point the search
// is simpler because we have already probed the hash table, done a null move
// search, and searched the first move before splitting, so we don't have to
// repeat all this work again. We also don't need to store anything to the hash
// table here: This is taken care of after we return from the split point.
private static ValueT search(NodeType NT, bool SpNode, Position pos, StackArrayWrapper ss, ValueT alpha, ValueT beta,
Depth depth, bool cutNode)
{
Utils.WriteToLog($"search(NT={(int) NT}, SpNode={(SpNode ? 1 : 0)}, pos={pos.key()}, ss, alpha={alpha}, beta={beta}, depth={(int) depth}, cutNode={(cutNode ? 1 : 0)})");
var RootNode = NT == NodeType.Root;
var PvNode = RootNode || NT == NodeType.PV;
Debug.Assert(-Value.VALUE_INFINITE <= alpha && alpha < beta && beta <= Value.VALUE_INFINITE);
Debug.Assert(PvNode || (alpha == beta - 1));
Debug.Assert(depth > Depth.DEPTH_ZERO);
var st = new StateInfo();
TTEntry tte;
SplitPoint splitPoint = null;
ulong posKey = 0;
MoveT ttMove, move, excludedMove, bestMove;
ValueT bestValue, value, ttValue, eval;
bool ttHit;
int moveCount = 0;
int quietCount = 0;
var stack = ss[ss.current];
var stackPlus1 = ss[ss.current + 1];
var stackPlus2 = ss[ss.current + 2];
var stackMinus1 = ss[ss.current - 1];
var stackMinus2 = ss[ss.current - 2];
// Step 1. Initialize node
var thisThread = pos.this_thread();
bool inCheck = pos.checkers() != 0;
if (SpNode)
{
splitPoint = stack.splitPoint;
bestMove = Move.Create(splitPoint.bestMove);
bestValue = Value.Create(splitPoint.bestValue);
tte = new TTEntry();
ttMove = excludedMove = Move.MOVE_NONE;
ttValue = Value.VALUE_NONE;
Debug.Assert(splitPoint.bestValue > -Value.VALUE_INFINITE && splitPoint.moveCount > 0);
goto moves_loop;
}
moveCount = quietCount = stack.moveCount = 0;
bestValue = -Value.VALUE_INFINITE;
stack.ply = stackMinus1.ply + 1;
// Used to send selDepth info to GUI
if (PvNode && thisThread.maxPly < stack.ply)
thisThread.maxPly = stack.ply;
if (!RootNode)
{
// Step 2. Check for aborted search and immediate draw
if (Signals.stop || pos.is_draw() || stack.ply >= _.MAX_PLY)
return stack.ply >= _.MAX_PLY && !inCheck
? Eval.evaluate(false, pos)
: DrawValue[pos.side_to_move()];
// Step 3. Mate distance pruning. Even if we mate at the next move our score
// would be at best mate_in(ss.ply+1), but if alpha is already bigger because
// a shorter mate was found upward in the tree then there is no need to search
// because we will never beat the current alpha. Same logic but with reversed
// signs applies also in the opposite condition of being mated instead of giving
// mate. In this case return a fail-high score.
alpha = Value.Create(Math.Max(Value.mated_in(stack.ply), alpha));
beta = Value.Create(Math.Min(Value.mate_in(stack.ply + 1), beta));
if (alpha >= beta)
return alpha;
}
Debug.Assert(0 <= stack.ply && stack.ply < _.MAX_PLY);
stack.currentMove = stack.ttMove = stackPlus1.excludedMove = bestMove = Move.MOVE_NONE;
stackPlus1.skipEarlyPruning = false;
stackPlus1.reduction = Depth.DEPTH_ZERO;
stackPlus2.killers0 = stackPlus2.killers1 = Move.MOVE_NONE;
// Step 4. Transposition table lookup
// We don't want the score of a partial search to overwrite a previous full search
// TT value, so we use a different position key in case of an excluded move.
excludedMove = stack.excludedMove;
posKey = excludedMove != 0 ? pos.exclusion_key() : pos.key();
tte = TranspositionTable.probe(posKey, out ttHit);
stack.ttMove = ttMove = RootNode ? RootMoves[(int) PVIdx].pv[0] : ttHit ? tte.move() : Move.MOVE_NONE;
ttValue = ttHit ? value_from_tt(tte.value(), stack.ply) : Value.VALUE_NONE;
// At non-PV nodes we check for a fail high/low. We don't prune at PV nodes
if (!PvNode
&& ttHit
&& tte.depth() >= depth
//.........这里部分代码省略.........
示例6: qsearch
private static ValueT qsearch(NodeType NT, bool InCheck, Position pos, StackArrayWrapper ss, ValueT alpha, ValueT beta,
Depth depth)
{
Utils.WriteToLog($"qsearch(NT={(int) NT}, InCheck={(InCheck ? 1 : 0)}, pos={pos.key()}, ss, alpha={alpha}, beta={beta}, depth={(int) depth})");
var PvNode = NT == NodeType.PV;
Debug.Assert(NT == NodeType.PV || NT == NodeType.NonPV);
Debug.Assert(InCheck == (pos.checkers() != 0));
Debug.Assert(alpha >= -Value.VALUE_INFINITE && alpha < beta && beta <= Value.VALUE_INFINITE);
Debug.Assert(PvNode || (alpha == beta - 1));
Debug.Assert(depth <= Depth.DEPTH_ZERO_C);
var currentStack = ss[ss.current];
var nextStack = ss[ss.current+1];
var previousStack = ss[ss.current - 1];
var oldAlpha = 0;
if (PvNode)
{
oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves
nextStack.pv = new List<MoveT>() { Move.MOVE_NONE };
currentStack.pv[0] = Move.MOVE_NONE;
}
currentStack.currentMove = Move.MOVE_NONE;
currentStack.ply = previousStack.ply + 1;
var currentPly = currentStack.ply;
// Check for an instant draw or if the maximum ply has been reached
if (pos.is_draw() || currentPly >= _.MAX_PLY)
return currentPly >= _.MAX_PLY && !InCheck
? Eval.evaluate(false, pos)
: DrawValue[pos.side_to_move()];
Debug.Assert(0 <= currentPly && currentPly < _.MAX_PLY);
// Decide whether or not to include checks: this fixes also the type of
// TT entry depth that we are going to use. Note that in qsearch we use
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
var ttDepth = InCheck || (int)depth >= Depth.DEPTH_QS_CHECKS_C
? Depth.DEPTH_QS_CHECKS
: Depth.DEPTH_QS_NO_CHECKS;
// Transposition table lookup
bool ttHit;
var posKey = pos.key();
var tte = TranspositionTable.probe(posKey, out ttHit);
var ttMove = ttHit ? tte.move() : Move.MOVE_NONE;
var ttValue = ttHit ? value_from_tt(tte.value(), currentPly) : Value.VALUE_NONE;
if (!PvNode
&& ttHit
&& tte.depth() >= ttDepth
&& ttValue != Value.VALUE_NONE // Only in case of TT access race
&& ((ttValue >= beta ? (tte.bound() & Bound.BOUND_LOWER) : (tte.bound() & Bound.BOUND_UPPER))) != 0)
{
currentStack.currentMove = ttMove; // Can be MOVE_NONE
return ttValue;
}
ValueT bestValue;
ValueT futilityBase;
// Evaluate the position statically
if (InCheck)
{
currentStack.staticEval = Value.VALUE_NONE;
bestValue = futilityBase = -Value.VALUE_INFINITE;
}
else
{
if (ttHit)
{
// Never assume anything on values stored in TT
if ((currentStack.staticEval = bestValue = tte.eval()) == Value.VALUE_NONE)
currentStack.staticEval = bestValue = Eval.evaluate(false, pos);
// Can ttValue be used as a better position evaluation?
if (ttValue != Value.VALUE_NONE)
if ((tte.bound() & (ttValue > bestValue ? Bound.BOUND_LOWER : Bound.BOUND_UPPER)) != 0)
bestValue = ttValue;
}
else
currentStack.staticEval = bestValue =
previousStack.currentMove != Move.MOVE_NULL
? Eval.evaluate(false, pos)
: -previousStack.staticEval + 2*Eval.Tempo;
// Stand pat. Return immediately if static value is at least beta
if (bestValue >= beta)
{
if (!ttHit)
tte.save(pos.key(), value_to_tt(bestValue, currentPly), Bound.BOUND_LOWER,
Depth.DEPTH_NONE, Move.MOVE_NONE, currentStack.staticEval, TranspositionTable.generation());
return bestValue;
}
if (PvNode && bestValue > alpha)
alpha = bestValue;
futilityBase = bestValue + 128;
}
//.........这里部分代码省略.........
示例7: generate_LEGAL
/// generate
/// LEGAL generates all the legal moves in the given position
private static ExtMoveArrayWrapper generate_LEGAL(Position pos, ExtMoveArrayWrapper moveList)
{
var pinned = pos.pinned_pieces(pos.side_to_move());
var ksq = pos.square(PieceType.KING, pos.side_to_move());
var cur = moveList.current;
moveList = pos.checkers() != 0
? generate(GenType.EVASIONS, pos, moveList)
: generate(GenType.NON_EVASIONS, pos, moveList);
while (cur != moveList.current)
{
if ((pinned != 0 || Move.from_sq(moveList[cur]) == ksq || Move.type_of(moveList[cur]) == MoveType.ENPASSANT)
&& !pos.legal(moveList[cur], pinned))
{
for (var idx = cur; idx < moveList.current; idx++)
{
moveList.table[idx] = moveList.table[idx + 1];
}
--moveList;
}
else
{
++cur;
}
}
return moveList;
}
示例8: generate_EVASIONS
/// generate
/// EVASIONS
/// generates all pseudo-legal check evasions when the side
/// to move is in check. Returns a pointer to the end of the move list.
private static ExtMoveArrayWrapper generate_EVASIONS(Position pos, ExtMoveArrayWrapper moveList)
{
Debug.Assert(pos.checkers() != 0);
var us = pos.side_to_move();
var ksq = pos.square(PieceType.KING, us);
var sliderAttacks = Bitboard.Create(0);
var sliders = pos.checkers() & ~pos.pieces_PtPt(PieceType.KNIGHT, PieceType.PAWN);
// Find all the squares attacked by slider checkers. We will remove them from
// the king evasions in order to skip known illegal moves, which avoids any
// useless legality checks later on.
while (sliders != 0)
{
var checksq1 = Utils.pop_lsb(ref sliders);
sliderAttacks |= Bitboard.XorWithSquare(Utils.LineBB[checksq1, ksq], checksq1);
}
// Generate evasions for king, capture and non capture moves
var b = pos.attacks_from_PtS(PieceType.KING, ksq) & ~pos.pieces_Ct(us) & ~sliderAttacks;
while (b != 0)
{
(moveList).Add(Move.make_move(ksq, Utils.pop_lsb(ref b)));
}
if (Bitboard.more_than_one(pos.checkers()))
{
return moveList; // Double check, only a king move can save the day
}
// Generate blocking evasions or captures of the checking piece
var checksq = Utils.lsb(pos.checkers());
var target = Bitboard.OrWithSquare(Utils.between_bb(checksq, ksq), checksq);
return us == Color.WHITE
? generate_all(Color.WHITE, GenType.EVASIONS, pos, moveList, target)
: generate_all(Color.BLACK, GenType.EVASIONS, pos, moveList, target);
}
示例9: generate_QUIET_CHECKS
/// generate
/// QUIET_CHECKS
/// generates all pseudo-legal non-captures and knight
/// underpromotions that give check. Returns a pointer to the end of the move list.
private static ExtMoveArrayWrapper generate_QUIET_CHECKS(Position pos, ExtMoveArrayWrapper moveList)
{
Debug.Assert(pos.checkers() == 0);
var us = pos.side_to_move();
var ci = new CheckInfo(pos);
var dc = ci.dcCandidates;
while (dc != 0)
{
var from = Utils.pop_lsb(ref dc);
var pt = Piece.type_of(pos.piece_on(from));
if (pt == PieceType.PAWN)
{
continue; // Will be generated together with direct checks
}
var b = pos.attacks_from_PtS(pt, from) & ~pos.pieces();
if (pt == PieceType.KING)
{
b &= ~Utils.PseudoAttacks[PieceType.QUEEN, ci.ksq];
}
while (b != 0)
{
(moveList).Add(Move.make_move(from, Utils.pop_lsb(ref b)));
}
}
return us == Color.WHITE
? generate_all(Color.WHITE, GenType.QUIET_CHECKS, pos, moveList, ~pos.pieces(), ci)
: generate_all(Color.BLACK, GenType.QUIET_CHECKS, pos, moveList, ~pos.pieces(), ci);
}
示例10: generate
internal static ExtMoveArrayWrapper generate(GenType Type, Position pos, ExtMoveArrayWrapper moveList)
{
switch (Type)
{
case GenType.EVASIONS:
return generate_EVASIONS(pos, moveList);
case GenType.LEGAL:
return generate_LEGAL(pos, moveList);
case GenType.QUIET_CHECKS:
return generate_QUIET_CHECKS(pos, moveList);
}
Debug.Assert(Type == GenType.CAPTURES || Type == GenType.QUIETS || Type == GenType.NON_EVASIONS);
Debug.Assert(pos.checkers() == 0);
var us = pos.side_to_move();
var target = Type == GenType.CAPTURES
? pos.pieces_Ct(Color.opposite(us))
: Type == GenType.QUIETS
? ~pos.pieces()
: Type == GenType.NON_EVASIONS ? ~pos.pieces_Ct(us) : Bitboard.Create(0);
return us == Color.WHITE
? generate_all(Color.WHITE, Type, pos, moveList, target)
: generate_all(Color.BLACK, Type, pos, moveList, target);
}
示例11: evaluate
/// evaluate() is the main evaluation function. It returns a static evaluation
/// of the position always from the point of view of the side to move.
internal static ValueT evaluate(bool DoTrace, Position pos)
{
Debug.Assert(pos.checkers() == 0);
var ei = new EvalInfo();
ScoreT[] mobility = {Score.SCORE_ZERO, Score.SCORE_ZERO};
// Initialize score by reading the incrementally updated scores included
// in the position object (material + piece square tables).
// Score is computed from the point of view of white.
var score = pos.psq_score();
// Probe the material hash table
var me = Material.probe(pos);
score += me.imbalance();
// If we have a specialized evaluation function for the current material
// configuration, call it and return.
if (me.specialized_eval_exists())
{
return me.evaluate(pos);
}
// Probe the pawn hash table
ei.pi = Pawns.probe(pos);
score += Score.Multiply(ei.pi.pawns_score(), Weights[PawnStructure]);
// Initialize attack and king safety bitboards
ei.attackedBy[Color.WHITE, PieceType.ALL_PIECES] =
ei.attackedBy[Color.BLACK, PieceType.ALL_PIECES] = Bitboard.Create(0);
init_eval_info(Color.WHITE, pos, ei);
init_eval_info(Color.BLACK, pos, ei);
// Pawns blocked or on ranks 2 and 3. Will be excluded from the mobility area
BitboardT[] blockedPawns =
{
pos.pieces_CtPt(Color.WHITE, PieceType.PAWN)
& (Bitboard.shift_bb(Square.DELTA_S, pos.pieces()) | Bitboard.Rank2BB
| Bitboard.Rank3BB),
pos.pieces_CtPt(Color.BLACK, PieceType.PAWN)
& (Bitboard.shift_bb(Square.DELTA_N, pos.pieces()) | Bitboard.Rank7BB
| Bitboard.Rank6BB)
};
// Do not include in mobility squares protected by enemy pawns, or occupied
// by our blocked pawns or king.
BitboardT[] mobilityArea =
{
~(Bitboard.OrWithSquare(ei.attackedBy[Color.BLACK, PieceType.PAWN] | blockedPawns[Color.WHITE]
, pos.square(PieceType.KING, Color.WHITE))),
~(Bitboard.OrWithSquare(ei.attackedBy[Color.WHITE, PieceType.PAWN] | blockedPawns[Color.BLACK]
, pos.square(PieceType.KING, Color.BLACK)))
};
// Evaluate pieces and mobility
score += evaluate_pieces(PieceType.KNIGHT, Color.WHITE, DoTrace, pos, ei, mobility, mobilityArea);
score += Score.Multiply(mobility[Color.WHITE] - mobility[Color.BLACK], Weights[Mobility]);
// Evaluate kings after all other pieces because we need complete attack
// information when computing the king safety evaluation.
score += evaluate_king(Color.WHITE, DoTrace, pos, ei) - evaluate_king(Color.BLACK, DoTrace, pos, ei);
// Evaluate tactical threats, we need full attack information including king
score += evaluate_threats(Color.WHITE, DoTrace, pos, ei) - evaluate_threats(Color.BLACK, DoTrace, pos, ei);
// Evaluate passed pawns, we need full attack information including king
score += evaluate_passed_pawns(Color.WHITE, DoTrace, pos, ei)
- evaluate_passed_pawns(Color.BLACK, DoTrace, pos, ei);
// If both sides have only pawns, score for potential unstoppable pawns
if (pos.non_pawn_material(Color.WHITE) == 0 && pos.non_pawn_material(Color.BLACK) == 0)
{
BitboardT b;
if ((b = ei.pi.passed_pawns(Color.WHITE)) != 0)
{
score += Rank.relative_rank_CtSt(Color.WHITE, Utils.frontmost_sq(Color.WHITE, b)) * Unstoppable;
}
if ((b = ei.pi.passed_pawns(Color.BLACK)) != 0)
{
score -= Rank.relative_rank_CtSt(Color.BLACK, Utils.frontmost_sq(Color.BLACK, b)) * Unstoppable;
}
}
// Evaluate space for both sides, only during opening
if (pos.non_pawn_material(Color.WHITE) + pos.non_pawn_material(Color.BLACK) >= 12222)
{
score += Score.Multiply(evaluate_space(Color.WHITE, pos, ei) - evaluate_space(Color.BLACK, pos, ei), Weights[Space]);
}
// Scale winning side if position is more drawish than it appears
var strongSide = Score.eg_value(score) > Value.VALUE_DRAW ? Color.WHITE : Color.BLACK;
var sf = me.scale_factor(pos, strongSide);
// If we don't already have an unusual scale factor, check for certain
// types of endgames, and use a lower scale for those.
if (me.game_phase() < Phase.PHASE_MIDGAME
&& (sf == ScaleFactor.SCALE_FACTOR_NORMAL || sf == ScaleFactor.SCALE_FACTOR_ONEPAWN))
//.........这里部分代码省略.........