本文整理汇总了C#中Polygon.IsPointInsideParanoid方法的典型用法代码示例。如果您正苦于以下问题:C# Polygon.IsPointInsideParanoid方法的具体用法?C# Polygon.IsPointInsideParanoid怎么用?C# Polygon.IsPointInsideParanoid使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Polygon
的用法示例。
在下文中一共展示了Polygon.IsPointInsideParanoid方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: SplicedArc
/// <summary>
/// Helper to return a spliced arc.
/// </summary>
private static Segment SplicedArc( Polygon parent, Circle c, List<IntersectionPoint> iPoints, ref int pair, bool increment, ref int nextSegIndex )
{
Segment spliced = SmallerSplicedArc( c, iPoints, ref pair, increment, ref nextSegIndex );
// This is heuristic, but works quite well.
if( System.Math.Abs( spliced.Angle ) < System.Math.PI * .75 )
return spliced;
// Direction should actually be such that arc is inside the parent polygon,
// which may not be the case for the segment above.
// Now check to make sure the arc is indeed inside the parent polygon.
double testAngle = spliced.Angle / 1000;
if( spliced.Clockwise )
testAngle *= -1;
Vector3D t1 = spliced.P1;
t1.RotateXY( spliced.Center, testAngle );
// ZZZ - I don't like relying on our weak IsPointInside method.
if( !parent.IsPointInsideParanoid( t1 ) )
spliced.Clockwise = !spliced.Clockwise;
return spliced;
}
示例2: SlicePolygonInternal
private static bool SlicePolygonInternal( Polygon p, Circle c, out List<Polygon> output )
{
// Our approach:
// (1) Find the intersection points, and splice them into the polygon. (splicing in is the main diff from old algorithm.)
// (2) From each intersection point, walk the polygon.
// (3) When you are at an intersection point, always turn left, which may involve adding a new segment of the slicing circle.
// (4) We'll have to check for duplicate polygons in the resulting list, and remove them.
output = new List<Polygon>();
// We must be a digon at a minimum.
if( p.NumSides < 2 )
return false;
// XXX - Code assumes well-formed polygon: closed (has connected segments),
// no repeated vertices. Assert all this?
// Code also assumes CCW orientation.
if( !p.Orientation )
p.Reverse();
// Cycle through our segments and splice in all the intersection points.
Polygon diced = new Polygon();
List<IntersectionPoint> iPoints = new List<IntersectionPoint>();
for( int i=0; i<p.NumSides; i++ )
{
Segment s = p.Segments[i];
Vector3D[] intersections = c.GetIntersectionPoints( s );
if( intersections == null )
continue;
switch( intersections.Length )
{
case 0:
{
diced.Segments.Add( s );
break;
}
case 1:
{
// ZZZ - check here to see if it is a tangent iPoint? Not sure if we need to do this.
diced.Segments.Add( SplitHelper( s, intersections[0], diced, iPoints ) );
break;
}
case 2:
{
// We need to ensure the intersection points are ordered correctly on the segment.
Vector3D i1 = intersections[0], i2 = intersections[1];
if( !s.Ordered( i1, i2 ) )
Utils.SwapPoints( ref i1, ref i2 );
Segment secondToSplit = SplitHelper( s, i1, diced, iPoints );
Segment segmentToAdd = SplitHelper( secondToSplit, i2, diced, iPoints );
diced.Segments.Add( segmentToAdd );
break;
}
default:
Debug.Assert( false );
return false;
}
}
// NOTE: We've been careful to avoid adding duplicates to iPoints.
// Are we done? (no intersections)
if( 0 == iPoints.Count )
{
output.Add( p );
return true;
}
// We don't yet deal with tangengies,
// but we're going to let this case slip through as unsliced.
if( 1 == iPoints.Count )
{
output.Add( p );
return true;
}
// We don't yet deal with tangencies.
// We're going to fail on this case, because it could be more problematic.
if( Utils.Odd( iPoints.Count ) )
{
Debug.Assert( false );
return false;
}
if( iPoints.Count > 2 )
{
// We may need our intersection points to all be reorded by 1.
// This is so that when walking from i1 -> i2 along c, we will be moving through the interior of the polygon.
// ZZZ - This may need to change when hack in SplicedArc is improved.
int dummy = 0;
Segment testArc = SmallerSplicedArc( c, iPoints, ref dummy, true, ref dummy );
Vector3D midpoint = testArc.Midpoint;
if( !p.IsPointInsideParanoid( midpoint ) )
{
IntersectionPoint t = iPoints[0];
iPoints.RemoveAt( 0 );
iPoints.Add( t );
//.........这里部分代码省略.........