本文整理汇总了C#中Polygon.ContainsPoint方法的典型用法代码示例。如果您正苦于以下问题:C# Polygon.ContainsPoint方法的具体用法?C# Polygon.ContainsPoint怎么用?C# Polygon.ContainsPoint使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Polygon
的用法示例。
在下文中一共展示了Polygon.ContainsPoint方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: isLinearEdgeEnabled
private bool isLinearEdgeEnabled(PlanarGraphEdge edge, OverlayType operation, Polygon polygon, bool inverseArgs)
{
if (isAreaEdgeEnabled(edge, operation, polygon, inverseArgs))
return false;
switch (operation)
{
case OverlayType.Intersection:
return edge.Label.UsedByObject1 && (edge.Label.UsedByObject2 || polygon.ContainsPoint(edge.CenterPoint()));
case OverlayType.Union:
return edge.Label.UsedByObject1 && !polygon.ContainsPoint(edge.CenterPoint());
case OverlayType.Difference:
return inverseArgs ? false :
edge.Label.UsedByObject1 &&
!polygon.ContainsPoint(edge.CenterPoint()) &&
!edge.Label.UsedByObject2;
case OverlayType.SymmetricDifference:
return edge.Label.UsedByObject1 &&
!polygon.ContainsPoint(edge.CenterPoint()) &&
!edge.Label.UsedByObject2;
}
return false;
}
示例2: hasPointInside
private static bool hasPointInside(Polygon polygon, List<ICoordinate> points)
{
foreach (ICoordinate point in points)
if (polygon.ContainsPoint(point))
return true;
return false;
}
示例3: isAreaEdgeEnabled
private bool isAreaEdgeEnabled(PlanarGraphEdge edge, OverlayType operation, Polygon p1, Polygon p2)
{
bool usebyPolygon1 = edge.Label.UsedByObject1;
bool usebyPolygon2 = edge.Label.UsedByObject2;
switch (operation)
{
case OverlayType.Intersection:
if (usebyPolygon1 && usebyPolygon2 && edge.OrientationInObject1 == edge.OrientationInObject2)
return true;
if ((usebyPolygon1 ^ usebyPolygon2))
if (usebyPolygon1)
{
if (p2.ContainsPoint(edge.CenterPoint()))
return true;
}
else
{
if (p1.ContainsPoint(edge.CenterPoint()))
return true;
}
break;
case OverlayType.Union:
if (usebyPolygon1 && usebyPolygon2 && edge.OrientationInObject1 == edge.OrientationInObject2)
return true;
if ((usebyPolygon1 ^ usebyPolygon2))
if (usebyPolygon1)
{
if (!p2.ContainsPoint(edge.CenterPoint()))
return true;
}
else
{
if (!p1.ContainsPoint(edge.CenterPoint()))
return true;
}
break;
case OverlayType.Difference:
if (usebyPolygon1 && usebyPolygon2 && edge.OrientationInObject1 != edge.OrientationInObject2)
return true;
if ((usebyPolygon1 ^ usebyPolygon2))
if (usebyPolygon1)
{
if (!p2.ContainsPoint(edge.CenterPoint()))
return true;
}
else
{
if (p1.ContainsPoint(edge.CenterPoint()))
return true;
}
break;
case OverlayType.SymmetricDifference:
if ((usebyPolygon1 ^ usebyPolygon2))
return true;
break;
}
return false;
}
示例4: checkWeightedVertex
private bool checkWeightedVertex(Polyline polyline, KDTree vertexIndex, SDMinVertex currentVertex, KDTree crossPointIndex)
{
// probably not an internal vertex
if (currentVertex.Previous == null || currentVertex.Next == null)
return true;
// top with infinite weight ("do not remove")
if (double.IsPositiveInfinity(currentVertex.Weight))
return true;
SDMinVertex previous = currentVertex.Previous;
SDMinVertex next = currentVertex.Next;
// One of the segments formed by the vertex in question may be one of the intersection points.
// If so, you can not remove the top, as point of self-intersection, it may be removed.
Segment s1 = new Segment(pointOfWeightedVertex(polyline, currentVertex),
pointOfWeightedVertex(polyline, previous));
Segment s2 = new Segment(pointOfWeightedVertex(polyline, currentVertex),
pointOfWeightedVertex(polyline, next));
List<SDMinCrossPoint> crossPoints = new List<SDMinCrossPoint>();
crossPointIndex.QueryObjectsInRectangle(s1.GetBoundingRectangle(), crossPoints);
crossPointIndex.QueryObjectsInRectangle(s2.GetBoundingRectangle(), crossPoints);
foreach (SDMinCrossPoint point in crossPoints)
{
if (PlanimetryAlgorithms.LiesOnSegment(point.Point, s1))
{
currentVertex.IsCrossSegmentVertex = true;
currentVertex.Previous.IsCrossSegmentVertex = true;
return false;
}
if(PlanimetryAlgorithms.LiesOnSegment(point.Point, s2))
{
currentVertex.IsCrossSegmentVertex = true;
currentVertex.Next.IsCrossSegmentVertex = true;
return false;
}
}
//One of the polyline vertices can belong to a triangle,
//the apex of which is considered the top. In this case,
//the top can not be deleted because will be a new point of self-intersection.
Polygon triangle = new Polygon(new ICoordinate[] { pointOfWeightedVertex(polyline, previous),
pointOfWeightedVertex(polyline, currentVertex),
pointOfWeightedVertex(polyline, next) });
List<SDMinVertex> vertices = new List<SDMinVertex>();
vertexIndex.QueryObjectsInRectangle<SDMinVertex>(triangle.GetBoundingRectangle(), vertices);
foreach (SDMinVertex vertex in vertices)
{
ICoordinate p = pointOfWeightedVertex(polyline, vertex);
//point should not be the top of the triangle
if (p.ExactEquals(triangle.Contours[0].Vertices[0]) ||
p.ExactEquals(triangle.Contours[0].Vertices[1]) ||
p.ExactEquals(triangle.Contours[0].Vertices[2]))
continue;
if (triangle.ContainsPoint(p))
return false;
}
return true;
}