当前位置: 首页>>代码示例>>C#>>正文


C# DoubleMatrix.SetRow方法代码示例

本文整理汇总了C#中DoubleMatrix.SetRow方法的典型用法代码示例。如果您正苦于以下问题:C# DoubleMatrix.SetRow方法的具体用法?C# DoubleMatrix.SetRow怎么用?C# DoubleMatrix.SetRow使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在DoubleMatrix的用法示例。


在下文中一共展示了DoubleMatrix.SetRow方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: SetRowArrayWrongRank

 public void SetRowArrayWrongRank()
 {
   DoubleMatrix a = new DoubleMatrix(2,2);
   double[] b = {1,2,3};
   a.SetRow(1,b);
 }
开发者ID:xuchuansheng,项目名称:GenXSource,代码行数:6,代码来源:DoubleMatrixTest.cs

示例2: SetRowArray

 public void SetRowArray()
 {
   DoubleMatrix a = new DoubleMatrix(2,2);
   double[] b = {1,2};
   a.SetRow(0,b);
   Assert.AreEqual(b[0], a[0,0]);
   Assert.AreEqual(b[1], a[0,1]);
 }
开发者ID:xuchuansheng,项目名称:GenXSource,代码行数:8,代码来源:DoubleMatrixTest.cs

示例3: SetRowArrayOutOfRange

 public void SetRowArrayOutOfRange()
 {
   DoubleMatrix a = new DoubleMatrix(2,2);
   double[] b = {1,2};
   a.SetRow(2,b);
 }
开发者ID:xuchuansheng,项目名称:GenXSource,代码行数:6,代码来源:DoubleMatrixTest.cs

示例4: SetRowWrongRank

 public void SetRowWrongRank()
 {
   DoubleMatrix a = new DoubleMatrix(2,2);
   DoubleVector b = new DoubleVector(3);
   a.SetRow(1,b);
 }
开发者ID:xuchuansheng,项目名称:GenXSource,代码行数:6,代码来源:DoubleMatrixTest.cs

示例5: SetRowOutOfRange

 public void SetRowOutOfRange()
 {
   DoubleMatrix a = new DoubleMatrix(2,2);
   DoubleVector b = new DoubleVector(2);
   a.SetRow(2,b);
 }
开发者ID:xuchuansheng,项目名称:GenXSource,代码行数:6,代码来源:DoubleMatrixTest.cs

示例6: SetRow

 public void SetRow()
 {
   DoubleMatrix a = new DoubleMatrix(2,2);
   DoubleVector b = new DoubleVector(2);
   b[0] = 1;
   b[1] = 2;
   a.SetRow(0,b);
   Assert.AreEqual(b[0], a[0,0]);
   Assert.AreEqual(b[1], a[0,1]);
 }
开发者ID:xuchuansheng,项目名称:GenXSource,代码行数:10,代码来源:DoubleMatrixTest.cs

示例7: Solve

    /// <summary>
    /// Solve a square Toeplitz system with a right-side matrix.
    /// </summary>
    /// <param name="col">The left-most column of the Toeplitz matrix.</param>
    /// <param name="row">The top-most row of the Toeplitz matrix.</param>
    /// <param name="Y">The right-side matrix of the system.</param>
    /// <returns>The solution matrix.</returns>
    /// <exception cref="ArgumentNullException">
    /// <EM>col</EM> is a null reference,
    /// <para>or</para>
    /// <para><EM>row</EM> is a null reference,</para>
    /// <para>or</para>
    /// <para><EM>Y</EM> is a null reference.</para>
    /// </exception>
    /// <exception cref="RankException">
    /// The length of <EM>col</EM> is 0,
    /// <para>or</para>
    /// <para>the lengths of <EM>col</EM> and <EM>row</EM> are not equal,</para>
    /// <para>or</para>
    /// <para>the number of rows in <EM>Y</EM> does not the length of <EM>col</EM> and <EM>row</EM>.</para>
    /// </exception>
    /// <exception cref="SingularMatrixException">
    /// The Toeplitz matrix or one of the the leading sub-matrices is singular.
    /// </exception>
    /// <exception cref="ArithmeticException">
    /// The values of the first element of <EM>col</EM> and <EM>row</EM> are not equal.
    /// </exception>
    /// <remarks>
    /// This method solves the linear system <B>AX</B> = <B>Y</B>. Where
    /// <B>T</B> is a square Toeplitz matrix, <B>X</B> is an unknown
    /// matrix and <B>Y</B> is a known matrix.
    /// <para>
    /// The classic Levinson algorithm is used to solve the system. The algorithm
    /// assumes that all the leading sub-matrices of the Toeplitz matrix are
    /// non-singular. When a sub-matrix is near singular, accuracy will
    /// be degraded. This member requires approximately <B>N</B> squared
    /// FLOPS to calculate a solution, where <B>N</B> is the matrix order.
    /// </para>
    /// <para>
    /// This static method has minimal storage requirements as it combines
    /// the <b>UDL</b> decomposition with the calculation of the solution vector
    /// in a single algorithm.
    /// </para>
    /// </remarks>
    public static DoubleMatrix Solve(IROVector col, IROVector row, IROMatrix Y)
    {
      // check parameters
      if (col == null)
      {
        throw new System.ArgumentNullException("col");
      }
      else if (col.Length == 0)
      {
        throw new RankException("The length of col is zero.");
      }
      else if (row == null)
      {
        throw new System.ArgumentNullException("row");
      }
      else if (col.Length != row.Length)
      {
        throw new RankException("The lengths of col and row are not equal.");
      }
      else if (col[0] != row[0])
      {
        throw new ArithmeticException("The values of the first element of col and row are not equal.");
      }
      else if (Y == null)
      {
        throw new System.ArgumentNullException("Y");
      }
      else if (col.Length != Y.Columns)
      {
        throw new RankException("The numer of rows in Y does not match the length of col and row.");
      }

      // check if leading diagonal is zero
      if (col[0] == 0.0)
      {
        throw new SingularMatrixException("One of the leading sub-matrices is singular.");
      }

      // decompose matrix
      int order = col.Length;
      double[] A = new double[order];
      double[] B = new double[order];
      double[] Z = new double[order];
      DoubleMatrix X = new DoubleMatrix(order);
      double Q, S, Ke, Kr, e;
      double Inner;
      int i, j, l;

      // setup the zero order solution
      A[0] = 1.0;
      B[0] = 1.0;
      e = 1.0 / col[0];
      X.SetRow(0, e * DoubleVector.GetRow(Y,0));

      for (i = 1; i < order; i++)
      {
//.........这里部分代码省略.........
开发者ID:xuchuansheng,项目名称:GenXSource,代码行数:101,代码来源:DoubleLevinson.cs

示例8: GetMatrix

    /// <summary>
    /// Get a copy of the Toeplitz matrix.
    /// </summary>
    public DoubleMatrix GetMatrix()
    {
      int i, j;

      // allocate memory for the matrix
      DoubleMatrix tm = new DoubleMatrix(m_Order);

#if MANAGED
      // fill top row
      double[] top = tm.data[0];
      Array.Copy(m_LeftColumn.data, 0, top, 0, m_Order);

      if (m_Order > 1)
      {
        // fill bottom row (reverse order)
        double[] bottom = tm.data[m_Order - 1];

        for (i = 0, j = m_Order - 1; i < m_Order; i++, j--)
        {
          bottom[i] = m_LeftColumn[j];
        }

        // fill rows in-between
        for (i = 1, j = m_Order - 1 ; j > 1; i++)
        {
          Array.Copy(top, 0, tm.data[i], i, j--);
          Array.Copy(bottom, j, tm.data[i], 0, i);
        }
      }
#else
      if (m_Order > 1)
      {
        double[] top = new double[m_Order];
        Array.Copy(m_LeftColumn.data, 0, top, 0, m_Order);
        tm.SetRow(0, top);

        // fill bottom row (reverse order)
        double[] bottom = new double[m_Order];

        for (i = 0, j = m_Order - 1; i < m_Order; i++, j--)
        {
          bottom[i] = m_LeftColumn[j];
        }

        // fill rows in-between
        for (i = 1, j = m_Order - 1 ; j > 0; i++)
        {
          double[] temp = new double[m_Order];
          Array.Copy(top, 0, temp, i, j--);
          Array.Copy(bottom, j, temp, 0, i);
          tm.SetRow(i, temp);
        }
      }
      else
      {
        Array.Copy(m_LeftColumn.data, 0, tm.data, 0, m_Order);
      }
#endif

      return tm;
    }
开发者ID:xuchuansheng,项目名称:GenXSource,代码行数:64,代码来源:DoubleSymmetricLevinson.cs


注:本文中的DoubleMatrix.SetRow方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。