本文整理汇总了C#中DoubleMatrix.SetRow方法的典型用法代码示例。如果您正苦于以下问题:C# DoubleMatrix.SetRow方法的具体用法?C# DoubleMatrix.SetRow怎么用?C# DoubleMatrix.SetRow使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DoubleMatrix
的用法示例。
在下文中一共展示了DoubleMatrix.SetRow方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: SetRowArrayWrongRank
public void SetRowArrayWrongRank()
{
DoubleMatrix a = new DoubleMatrix(2,2);
double[] b = {1,2,3};
a.SetRow(1,b);
}
示例2: SetRowArray
public void SetRowArray()
{
DoubleMatrix a = new DoubleMatrix(2,2);
double[] b = {1,2};
a.SetRow(0,b);
Assert.AreEqual(b[0], a[0,0]);
Assert.AreEqual(b[1], a[0,1]);
}
示例3: SetRowArrayOutOfRange
public void SetRowArrayOutOfRange()
{
DoubleMatrix a = new DoubleMatrix(2,2);
double[] b = {1,2};
a.SetRow(2,b);
}
示例4: SetRowWrongRank
public void SetRowWrongRank()
{
DoubleMatrix a = new DoubleMatrix(2,2);
DoubleVector b = new DoubleVector(3);
a.SetRow(1,b);
}
示例5: SetRowOutOfRange
public void SetRowOutOfRange()
{
DoubleMatrix a = new DoubleMatrix(2,2);
DoubleVector b = new DoubleVector(2);
a.SetRow(2,b);
}
示例6: SetRow
public void SetRow()
{
DoubleMatrix a = new DoubleMatrix(2,2);
DoubleVector b = new DoubleVector(2);
b[0] = 1;
b[1] = 2;
a.SetRow(0,b);
Assert.AreEqual(b[0], a[0,0]);
Assert.AreEqual(b[1], a[0,1]);
}
示例7: Solve
/// <summary>
/// Solve a square Toeplitz system with a right-side matrix.
/// </summary>
/// <param name="col">The left-most column of the Toeplitz matrix.</param>
/// <param name="row">The top-most row of the Toeplitz matrix.</param>
/// <param name="Y">The right-side matrix of the system.</param>
/// <returns>The solution matrix.</returns>
/// <exception cref="ArgumentNullException">
/// <EM>col</EM> is a null reference,
/// <para>or</para>
/// <para><EM>row</EM> is a null reference,</para>
/// <para>or</para>
/// <para><EM>Y</EM> is a null reference.</para>
/// </exception>
/// <exception cref="RankException">
/// The length of <EM>col</EM> is 0,
/// <para>or</para>
/// <para>the lengths of <EM>col</EM> and <EM>row</EM> are not equal,</para>
/// <para>or</para>
/// <para>the number of rows in <EM>Y</EM> does not the length of <EM>col</EM> and <EM>row</EM>.</para>
/// </exception>
/// <exception cref="SingularMatrixException">
/// The Toeplitz matrix or one of the the leading sub-matrices is singular.
/// </exception>
/// <exception cref="ArithmeticException">
/// The values of the first element of <EM>col</EM> and <EM>row</EM> are not equal.
/// </exception>
/// <remarks>
/// This method solves the linear system <B>AX</B> = <B>Y</B>. Where
/// <B>T</B> is a square Toeplitz matrix, <B>X</B> is an unknown
/// matrix and <B>Y</B> is a known matrix.
/// <para>
/// The classic Levinson algorithm is used to solve the system. The algorithm
/// assumes that all the leading sub-matrices of the Toeplitz matrix are
/// non-singular. When a sub-matrix is near singular, accuracy will
/// be degraded. This member requires approximately <B>N</B> squared
/// FLOPS to calculate a solution, where <B>N</B> is the matrix order.
/// </para>
/// <para>
/// This static method has minimal storage requirements as it combines
/// the <b>UDL</b> decomposition with the calculation of the solution vector
/// in a single algorithm.
/// </para>
/// </remarks>
public static DoubleMatrix Solve(IROVector col, IROVector row, IROMatrix Y)
{
// check parameters
if (col == null)
{
throw new System.ArgumentNullException("col");
}
else if (col.Length == 0)
{
throw new RankException("The length of col is zero.");
}
else if (row == null)
{
throw new System.ArgumentNullException("row");
}
else if (col.Length != row.Length)
{
throw new RankException("The lengths of col and row are not equal.");
}
else if (col[0] != row[0])
{
throw new ArithmeticException("The values of the first element of col and row are not equal.");
}
else if (Y == null)
{
throw new System.ArgumentNullException("Y");
}
else if (col.Length != Y.Columns)
{
throw new RankException("The numer of rows in Y does not match the length of col and row.");
}
// check if leading diagonal is zero
if (col[0] == 0.0)
{
throw new SingularMatrixException("One of the leading sub-matrices is singular.");
}
// decompose matrix
int order = col.Length;
double[] A = new double[order];
double[] B = new double[order];
double[] Z = new double[order];
DoubleMatrix X = new DoubleMatrix(order);
double Q, S, Ke, Kr, e;
double Inner;
int i, j, l;
// setup the zero order solution
A[0] = 1.0;
B[0] = 1.0;
e = 1.0 / col[0];
X.SetRow(0, e * DoubleVector.GetRow(Y,0));
for (i = 1; i < order; i++)
{
//.........这里部分代码省略.........
示例8: GetMatrix
/// <summary>
/// Get a copy of the Toeplitz matrix.
/// </summary>
public DoubleMatrix GetMatrix()
{
int i, j;
// allocate memory for the matrix
DoubleMatrix tm = new DoubleMatrix(m_Order);
#if MANAGED
// fill top row
double[] top = tm.data[0];
Array.Copy(m_LeftColumn.data, 0, top, 0, m_Order);
if (m_Order > 1)
{
// fill bottom row (reverse order)
double[] bottom = tm.data[m_Order - 1];
for (i = 0, j = m_Order - 1; i < m_Order; i++, j--)
{
bottom[i] = m_LeftColumn[j];
}
// fill rows in-between
for (i = 1, j = m_Order - 1 ; j > 1; i++)
{
Array.Copy(top, 0, tm.data[i], i, j--);
Array.Copy(bottom, j, tm.data[i], 0, i);
}
}
#else
if (m_Order > 1)
{
double[] top = new double[m_Order];
Array.Copy(m_LeftColumn.data, 0, top, 0, m_Order);
tm.SetRow(0, top);
// fill bottom row (reverse order)
double[] bottom = new double[m_Order];
for (i = 0, j = m_Order - 1; i < m_Order; i++, j--)
{
bottom[i] = m_LeftColumn[j];
}
// fill rows in-between
for (i = 1, j = m_Order - 1 ; j > 0; i++)
{
double[] temp = new double[m_Order];
Array.Copy(top, 0, temp, i, j--);
Array.Copy(bottom, j, temp, 0, i);
tm.SetRow(i, temp);
}
}
else
{
Array.Copy(m_LeftColumn.data, 0, tm.data, 0, m_Order);
}
#endif
return tm;
}