本文整理汇总了C#中DoubleMatrix.SetColumn方法的典型用法代码示例。如果您正苦于以下问题:C# DoubleMatrix.SetColumn方法的具体用法?C# DoubleMatrix.SetColumn怎么用?C# DoubleMatrix.SetColumn使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DoubleMatrix
的用法示例。
在下文中一共展示了DoubleMatrix.SetColumn方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: SetColumnArrayWrongRank
public void SetColumnArrayWrongRank()
{
DoubleMatrix a = new DoubleMatrix(2,2);
double[] b = {1,2,3};
a.SetColumn(1,b);
}
示例2: SetColumnArray
public void SetColumnArray()
{
DoubleMatrix a = new DoubleMatrix(2,2);
double[] b = {1,2};
a.SetColumn(0,b);
Assert.AreEqual(b[0], a[0,0]);
Assert.AreEqual(b[1], a[1,0]);
}
示例3: SetColumnArrayOutOfRange
public void SetColumnArrayOutOfRange()
{
DoubleMatrix a = new DoubleMatrix(2,2);
double[] b = {1,2};
a.SetColumn(2,b);
}
示例4: SetColumnWrongRank
public void SetColumnWrongRank()
{
DoubleMatrix a = new DoubleMatrix(2,2);
DoubleVector b = new DoubleVector(3);
a.SetColumn(1,b);
}
示例5: SetColumnOutOfRange
public void SetColumnOutOfRange()
{
DoubleMatrix a = new DoubleMatrix(2,2);
DoubleVector b = new DoubleVector(2);
a.SetColumn(2,b);
}
示例6: SetColumn
public void SetColumn()
{
DoubleMatrix a = new DoubleMatrix(2,2);
DoubleVector b = new DoubleVector(2);
b[0] = 1;
b[1] = 2;
a.SetColumn(0,b);
Assert.AreEqual(b[0], a[0,0]);
Assert.AreEqual(b[1], a[1,0]);
}
示例7: Solve
/// <summary>
/// Solve a square Toeplitz system with a right-side matrix.
/// </summary>
/// <param name="Y">The right-side matrix</param>
/// <returns>The solution matrix.</returns>
/// <exception cref="ArgumentNullException">
/// Parameter <B>Y</B> is a null reference.
/// </exception>
/// <exception cref="RankException">
/// The number of rows in <B>Y</B> is not equal to the number of rows in the Toeplitz matrix.
/// </exception>
/// <exception cref="SingularMatrixException">
/// The Toeplitz matrix or one of the the leading sub-matrices is singular.
/// </exception>
/// <remarks>
/// This member solves the linear system <B>TX</B> = <B>Y</B>, where <B>T</B> is
/// a square Toeplitz matrix, <B>X</B> is the unknown solution matrix
/// and <B>Y</B> is a known matrix.
/// <para>
/// The class implicitly decomposes the inverse Toeplitz matrix into a <b>UDL</b> factorisation
/// using the Levinson algorithm, before calculating the solution vector.
/// </para>
/// </remarks>
public DoubleMatrix Solve(IROMatrix Y)
{
DoubleMatrix X;
double Inner;
double[] a, b, x, y;
int i, j, l;
// check parameters
if (Y == null)
{
throw new System.ArgumentNullException("Y");
}
else if (m_Order != Y.Columns)
{
throw new RankException("The numer of rows in Y is not equal to the number of rows in the Toeplitz matrix.");
}
Compute();
if (m_IsSingular == true)
{
throw new SingularMatrixException("One of the leading sub-matrices is singular.");
}
// allocate memory for solution
X = new DoubleMatrix(m_Order, Y.Rows);
x = new double[m_Order];
for (l = 0; l < Y.Rows; l++)
{
// get right-side column
y = DoubleVector.GetColumnAsArray(Y,l);
// solve left-side column
for (i = 0; i < m_Order; i++)
{
a = m_LowerTriangle[i];
b = m_UpperTriangle[i];
Inner = y[i];
for (j = 0; j < i; j++)
{
Inner += a[j] * y[j];
}
Inner *= m_Diagonal[i];
x[i] = Inner;
for (j = 0; j < i; j++)
{
x[j] += Inner * b[j];
}
}
// insert left-side column into the matrix
X.SetColumn(l, x);
}
return X;
}