本文整理汇总了C#中DoubleMatrix.Clone方法的典型用法代码示例。如果您正苦于以下问题:C# DoubleMatrix.Clone方法的具体用法?C# DoubleMatrix.Clone怎么用?C# DoubleMatrix.Clone使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DoubleMatrix
的用法示例。
在下文中一共展示了DoubleMatrix.Clone方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Run
public override ICData Run()
{
List<Point> sourcePoints = Utilities.ExtractPoints(m_Image1, TresholdColor);
List<Point> targetPoints = Utilities.ExtractPoints(m_Image2, TresholdColor);
m_sourceMatrix = Utilities.ListToMatrix(sourcePoints);
m_targetMatrix = Utilities.ListToMatrix(targetPoints);
m_commonSize = new Size(Math.Max(m_Image1.Width, m_Image2.Width), Math.Max(m_Image1.Height, m_Image2.Height));
PCAMatching matching = new PCAMatching(new DoubleMatrix((Matrix<double>)m_sourceMatrix.Clone()), m_targetMatrix);
matching.Calculate();
CPCAresultData retResult = new CPCAresultData(m_sourceMatrix, matching.Result, m_commonSize, matching);
retResult.IncludeSource = IncludeSource;
return retResult;
}
示例2: CalculateVariableImpactMatrix
private DoubleMatrix CalculateVariableImpactMatrix(IRun[] runs, string[] runNames) {
DoubleMatrix matrix = null;
IEnumerable<DoubleMatrix> allVariableImpacts = (from run in runs
select run.Results[variableImpactResultName]).Cast<DoubleMatrix>();
IEnumerable<string> variableNames = (from variableImpact in allVariableImpacts
from variableName in variableImpact.RowNames
select variableName)
.Distinct();
// filter variableNames: only include names that have at least one non-zero value in a run
List<string> variableNamesList = (from variableName in variableNames
where GetVariableImpacts(variableName, allVariableImpacts).Any(x => !x.IsAlmost(0.0))
select variableName)
.ToList();
List<string> statictics = new List<string> { "Median Rank", "Mean", "StdDev", "pValue" };
List<string> columnNames = new List<string>(runNames);
columnNames.AddRange(statictics);
int numberOfRuns = runs.Length;
matrix = new DoubleMatrix(variableNamesList.Count, numberOfRuns + statictics.Count);
matrix.SortableView = true;
matrix.ColumnNames = columnNames;
// calculate statistics
List<List<double>> variableImpactsOverRuns = (from variableName in variableNamesList
select GetVariableImpacts(variableName, allVariableImpacts).ToList())
.ToList();
List<List<double>> variableRanks = (from variableName in variableNamesList
select GetVariableImpactRanks(variableName, allVariableImpacts).ToList())
.ToList();
if (variableImpactsOverRuns.Count() > 0) {
// the variable with the worst median impact value is chosen as the reference variable
// this is problematic if all variables are relevant, however works often in practice
List<double> referenceImpacts = (from impacts in variableImpactsOverRuns
let avg = impacts.Median()
orderby avg
select impacts)
.First();
// for all variables
for (int row = 0; row < variableImpactsOverRuns.Count; row++) {
// median rank
matrix[row, numberOfRuns] = variableRanks[row].Median();
// also show mean and std.dev. of relative variable impacts to indicate the relative difference in impacts of variables
matrix[row, numberOfRuns + 1] = Math.Round(variableImpactsOverRuns[row].Average(), 3);
matrix[row, numberOfRuns + 2] = Math.Round(variableImpactsOverRuns[row].StandardDeviation(), 3);
double leftTail = 0; double rightTail = 0; double bothTails = 0;
// calc differences of impacts for current variable and reference variable
double[] z = new double[referenceImpacts.Count];
for (int i = 0; i < z.Length; i++) {
z[i] = variableImpactsOverRuns[row][i] - referenceImpacts[i];
}
// wilcoxon signed rank test is used because the impact values of two variables in a single run are not independent
alglib.wsr.wilcoxonsignedranktest(z, z.Length, 0, ref bothTails, ref leftTail, ref rightTail);
matrix[row, numberOfRuns + 3] = Math.Round(bothTails, 4);
}
}
// fill matrix with impacts from runs
for (int i = 0; i < runs.Length; i++) {
IRun run = runs[i];
DoubleMatrix runVariableImpacts = (DoubleMatrix)run.Results[variableImpactResultName];
for (int j = 0; j < runVariableImpacts.Rows; j++) {
int rowIndex = variableNamesList.FindIndex(s => s == runVariableImpacts.RowNames.ElementAt(j));
if (rowIndex > -1) {
matrix[rowIndex, i] = Math.Round(runVariableImpacts[j, 0], 3);
}
}
}
// sort by median
var sortedMatrix = (DoubleMatrix)matrix.Clone();
var sortedIndexes = from i in Enumerable.Range(0, sortedMatrix.Rows)
orderby matrix[i, numberOfRuns]
select i;
int targetIndex = 0;
foreach (var sourceIndex in sortedIndexes) {
for (int c = 0; c < matrix.Columns; c++)
sortedMatrix[targetIndex, c] = matrix[sourceIndex, c];
targetIndex++;
}
sortedMatrix.RowNames = sortedIndexes.Select(i => variableNamesList[i]);
return sortedMatrix;
}
示例3: translate
private DoubleMatrix translate(DoubleMatrix i_CenteredMatrix, double i_Angle, double i_XScale, double i_YSale)
{
DoubleMatrix retResult = new DoubleMatrix((Matrix<double>)i_CenteredMatrix.Clone());
DoubleMatrix rotateMatrix = new DoubleMatrix(2, 2);
rotateMatrix[0, 0] = Math.Cos(i_Angle);
rotateMatrix[0, 1] = -1 * Math.Sin(i_Angle);
rotateMatrix[1, 0] = Math.Sin(i_Angle);
rotateMatrix[1, 1] = Math.Cos(i_Angle);
DoubleMatrix scaleMatrix = new DoubleMatrix(2, 2);
scaleMatrix.Init(0);
scaleMatrix[0, 0] = i_XScale;
scaleMatrix[1, 1] = i_YSale;
DoubleMatrix transform = scaleMatrix * rotateMatrix;
return transform * retResult;
}