本文整理汇总了C#中DenseVector.Multiply方法的典型用法代码示例。如果您正苦于以下问题:C# DenseVector.Multiply方法的具体用法?C# DenseVector.Multiply怎么用?C# DenseVector.Multiply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DenseVector
的用法示例。
在下文中一共展示了DenseVector.Multiply方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Initialize
//.........这里部分代码省略.........
// if (w(j) != 0)
// {
// w(j) = w(j) / a(j,j)
// if (w(j) < dropTol)
// {
// w(j) = 0;
// }
// if (w(j) != 0)
// {
// w = w - w(j) * U(j,*)
// }
if (workVector[j] != 0.0)
{
// Calculate the multiplication factors that go into the L matrix
workVector[j] = workVector[j] / _upper[j, j];
if (workVector[j].Magnitude < _dropTolerance)
{
workVector[j] = 0.0;
}
// Calculate the addition factor
if (workVector[j] != 0.0)
{
// vector update all in one go
_upper.Row(j, rowVector);
// zero out columnVector[k] because we don't need that
// one anymore for k = 0 to k = j
for (var k = 0; k <= j; k++)
{
rowVector[k] = 0.0;
}
rowVector.Multiply(workVector[j], rowVector);
workVector.Subtract(rowVector, workVector);
}
}
}
// for j = i, .. ,n
for (var j = i; j < sparseMatrix.RowCount; j++)
{
// if w(j) <= dropTol * ||A(i,*)||
// {
// w(j) = 0
// }
if (workVector[j].Magnitude <= _dropTolerance * vectorNorm.Real)
{
workVector[j] = 0.0;
}
}
// spaceRow = spaceLeft / (n - i + 1) // Determine the space for this row
var spaceRow = spaceLeft / (sparseMatrix.RowCount - i + 1);
// lfil = spaceRow / 2 // space for this row of L
var fillLevel = spaceRow / 2;
FindLargestItems(0, i - 1, indexSorting, workVector);
// l(i,j) = w(j) for j = 1, .. , i -1 // only the largest lfil elements
var lowerNonZeroCount = 0;
var count = 0;
for (var j = 0; j < i; j++)
{
if ((count > fillLevel) || (indexSorting[j] == -1))
{
示例2: Solve
//.........这里部分代码省略.........
Vector nu = new DenseVector(residuals.Count);
Vector vecS = new DenseVector(residuals.Count);
Vector vecSdash = new DenseVector(residuals.Count);
Vector temp = new DenseVector(residuals.Count);
Vector temp2 = new DenseVector(residuals.Count);
// create some temporary double variables that are needed
// to hold values in between iterations
Complex currentRho = 0;
Complex alpha = 0;
Complex omega = 0;
var iterationNumber = 0;
while (ShouldContinue(iterationNumber, result, input, residuals))
{
// rho_(i-1) = r~^T r_(i-1) // dotproduct r~ and r_(i-1)
var oldRho = currentRho;
currentRho = tempResiduals.DotProduct(residuals);
// if (rho_(i-1) == 0) // METHOD FAILS
// If rho is only 1 ULP from zero then we fail.
if (currentRho.Real.AlmostEqual(0, 1) && currentRho.Imaginary.AlmostEqual(0, 1))
{
// Rho-type breakdown
throw new Exception("Iterative solver experience a numerical break down");
}
if (iterationNumber != 0)
{
// beta_(i-1) = (rho_(i-1)/rho_(i-2))(alpha_(i-1)/omega(i-1))
var beta = (currentRho / oldRho) * (alpha / omega);
// p_i = r_(i-1) + beta_(i-1)(p_(i-1) - omega_(i-1) * nu_(i-1))
nu.Multiply(-omega, temp);
vecP.Add(temp, temp2);
temp2.CopyTo(vecP);
vecP.Multiply(beta, vecP);
vecP.Add(residuals, temp2);
temp2.CopyTo(vecP);
}
else
{
// p_i = r_(i-1)
residuals.CopyTo(vecP);
}
// SOLVE Mp~ = p_i // M = preconditioner
_preconditioner.Approximate(vecP, vecPdash);
// nu_i = Ap~
matrix.Multiply(vecPdash, nu);
// alpha_i = rho_(i-1)/ (r~^T nu_i) = rho / dotproduct(r~ and nu_i)
alpha = currentRho * 1 / tempResiduals.DotProduct(nu);
// s = r_(i-1) - alpha_i nu_i
nu.Multiply(-alpha, temp);
residuals.Add(temp, vecS);
// Check if we're converged. If so then stop. Otherwise continue;
// Calculate the temporary result.
// Be careful not to change any of the temp vectors, except for
// temp. Others will be used in the calculation later on.
// x_i = x_(i-1) + alpha_i * p^_i + s^_i
vecPdash.Multiply(alpha, temp);
示例3: Solve
/// <summary>
/// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
/// solution vector and x is the unknown vector.
/// </summary>
/// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
/// <param name="input">The solution vector, <c>b</c></param>
/// <param name="result">The result vector, <c>x</c></param>
public void Solve(Matrix matrix, Vector input, Vector result)
{
// If we were stopped before, we are no longer
// We're doing this at the start of the method to ensure
// that we can use these fields immediately.
_hasBeenStopped = false;
// Error checks
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
}
if (input == null)
{
throw new ArgumentNullException("input");
}
if (result == null)
{
throw new ArgumentNullException("result");
}
if (result.Count != input.Count)
{
throw new ArgumentException(Resources.ArgumentVectorsSameLength);
}
if (input.Count != matrix.RowCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(input, matrix);
}
// Initialize the solver fields
// Set the convergence monitor
if (_iterator == null)
{
_iterator = Iterator.CreateDefault();
}
if (_preconditioner == null)
{
_preconditioner = new UnitPreconditioner();
}
_preconditioner.Initialize(matrix);
var d = new DenseVector(input.Count);
var r = new DenseVector(input);
var uodd = new DenseVector(input.Count);
var ueven = new DenseVector(input.Count);
var v = new DenseVector(input.Count);
var pseudoResiduals = new DenseVector(input);
var x = new DenseVector(input.Count);
var yodd = new DenseVector(input.Count);
var yeven = new DenseVector(input);
// Temp vectors
var temp = new DenseVector(input.Count);
var temp1 = new DenseVector(input.Count);
var temp2 = new DenseVector(input.Count);
// Initialize
var startNorm = input.Norm(2);
// Define the scalars
double alpha = 0;
double eta = 0;
double theta = 0;
var tau = startNorm;
var rho = tau * tau;
// Calculate the initial values for v
// M temp = yEven
_preconditioner.Approximate(yeven, temp);
// v = A temp
matrix.Multiply(temp, v);
// Set uOdd
v.CopyTo(ueven);
// Start the iteration
var iterationNumber = 0;
//.........这里部分代码省略.........
示例4: Solve
//.........这里部分代码省略.........
float beta = 0;
float sigma;
// Define the temporary vectors
// rDash_0 = r_0
Vector rdash = new DenseVector(residuals);
// t_-1 = 0
Vector t = new DenseVector(residuals.Count);
Vector t0 = new DenseVector(residuals.Count);
// w_-1 = 0
Vector w = new DenseVector(residuals.Count);
// Define the remaining temporary vectors
Vector c = new DenseVector(residuals.Count);
Vector p = new DenseVector(residuals.Count);
Vector s = new DenseVector(residuals.Count);
Vector u = new DenseVector(residuals.Count);
Vector y = new DenseVector(residuals.Count);
Vector z = new DenseVector(residuals.Count);
Vector temp = new DenseVector(residuals.Count);
Vector temp2 = new DenseVector(residuals.Count);
Vector temp3 = new DenseVector(residuals.Count);
// for (k = 0, 1, .... )
var iterationNumber = 0;
while (ShouldContinue(iterationNumber, xtemp, input, residuals))
{
// p_k = r_k + beta_(k-1) * (p_(k-1) - u_(k-1))
p.Subtract(u, temp);
temp.Multiply(beta, temp2);
residuals.Add(temp2, p);
// Solve M b_k = p_k
_preconditioner.Approximate(p, temp);
// s_k = A b_k
matrix.Multiply(temp, s);
// alpha_k = (r*_0 * r_k) / (r*_0 * s_k)
var alpha = rdash.DotProduct(residuals) / rdash.DotProduct(s);
// y_k = t_(k-1) - r_k - alpha_k * w_(k-1) + alpha_k s_k
s.Subtract(w, temp);
t.Subtract(residuals, y);
temp.Multiply(alpha, temp2);
y.Add(temp2, temp3);
temp3.CopyTo(y);
// Store the old value of t in t0
t.CopyTo(t0);
// t_k = r_k - alpha_k s_k
s.Multiply(-alpha, temp2);
residuals.Add(temp2, t);
// Solve M d_k = t_k
_preconditioner.Approximate(t, temp);
// c_k = A d_k
matrix.Multiply(temp, c);
var cdot = c.DotProduct(c);
示例5: Solve
//.........这里部分代码省略.........
// Define the temporary values
var c = new Complex[k];
// Define the temporary vectors
Vector gtemp = new DenseVector(residuals.Count);
Vector u = new DenseVector(residuals.Count);
Vector utemp = new DenseVector(residuals.Count);
Vector temp = new DenseVector(residuals.Count);
Vector temp1 = new DenseVector(residuals.Count);
Vector temp2 = new DenseVector(residuals.Count);
Vector zd = new DenseVector(residuals.Count);
Vector zg = new DenseVector(residuals.Count);
Vector zw = new DenseVector(residuals.Count);
var d = CreateVectorArray(_startingVectors.Count, residuals.Count);
// g_0 = r_0
var g = CreateVectorArray(_startingVectors.Count, residuals.Count);
residuals.CopyTo(g[k - 1]);
var w = CreateVectorArray(_startingVectors.Count, residuals.Count);
// FOR (j = 0, 1, 2 ....)
var iterationNumber = 0;
while (ShouldContinue(iterationNumber, xtemp, input, residuals))
{
// SOLVE M g~_((j-1)k+k) = g_((j-1)k+k)
_preconditioner.Approximate(g[k - 1], gtemp);
// w_((j-1)k+k) = A g~_((j-1)k+k)
matrix.Multiply(gtemp, w[k - 1]);
// c_((j-1)k+k) = q^T_1 w_((j-1)k+k)
c[k - 1] = _startingVectors[0].DotProduct(w[k - 1]);
if (c[k - 1].Real.AlmostEqual(0, 1) && c[k - 1].Imaginary.AlmostEqual(0, 1))
{
throw new Exception("Iterative solver experience a numerical break down");
}
// alpha_(jk+1) = q^T_1 r_((j-1)k+k) / c_((j-1)k+k)
var alpha = _startingVectors[0].DotProduct(residuals) / c[k - 1];
// u_(jk+1) = r_((j-1)k+k) - alpha_(jk+1) w_((j-1)k+k)
w[k - 1].Multiply(-alpha, temp);
residuals.Add(temp, u);
// SOLVE M u~_(jk+1) = u_(jk+1)
_preconditioner.Approximate(u, temp1);
temp1.CopyTo(utemp);
// rho_(j+1) = -u^t_(jk+1) A u~_(jk+1) / ||A u~_(jk+1)||^2
matrix.Multiply(temp1, temp);
var rho = temp.DotProduct(temp);
// If rho is zero then temp is a zero vector and we're probably
// about to have zero residuals (i.e. an exact solution).
// So set rho to 1.0 because in the next step it will turn to zero.
if (rho.Real.AlmostEqual(0, 1) && rho.Imaginary.AlmostEqual(0, 1))
{
rho = 1.0;
}
rho = -u.DotProduct(temp) / rho;