当前位置: 首页>>代码示例>>C#>>正文


C# DenseVector.Multiply方法代码示例

本文整理汇总了C#中DenseVector.Multiply方法的典型用法代码示例。如果您正苦于以下问题:C# DenseVector.Multiply方法的具体用法?C# DenseVector.Multiply怎么用?C# DenseVector.Multiply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在DenseVector的用法示例。


在下文中一共展示了DenseVector.Multiply方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Initialize


//.........这里部分代码省略.........
                    // if (w(j) != 0)
                    // {
                    //     w(j) = w(j) / a(j,j)
                    //     if (w(j) < dropTol)
                    //     {
                    //         w(j) = 0;
                    //     }
                    //     if (w(j) != 0)
                    //     {
                    //         w = w - w(j) * U(j,*)
                    //     }
                    if (workVector[j] != 0.0)
                    {
                        // Calculate the multiplication factors that go into the L matrix
                        workVector[j] = workVector[j] / _upper[j, j];
                        if (workVector[j].Magnitude < _dropTolerance)
                        {
                            workVector[j] = 0.0;
                        }

                        // Calculate the addition factor
                        if (workVector[j] != 0.0)
                        {
                            // vector update all in one go
                            _upper.Row(j, rowVector);

                            // zero out columnVector[k] because we don't need that
                            // one anymore for k = 0 to k = j
                            for (var k = 0; k <= j; k++)
                            {
                                rowVector[k] = 0.0;
                            }

                            rowVector.Multiply(workVector[j], rowVector);
                            workVector.Subtract(rowVector, workVector);
                        }
                    }
                }

                // for j = i, .. ,n
                for (var j = i; j < sparseMatrix.RowCount; j++)
                {
                    // if w(j) <= dropTol * ||A(i,*)||
                    // {
                    //     w(j) = 0
                    // }
                    if (workVector[j].Magnitude <= _dropTolerance * vectorNorm.Real)
                    {
                        workVector[j] = 0.0;
                    }
                }

                // spaceRow = spaceLeft / (n - i + 1) // Determine the space for this row
                var spaceRow = spaceLeft / (sparseMatrix.RowCount - i + 1);

                // lfil = spaceRow / 2  // space for this row of L
                var fillLevel = spaceRow / 2;
                FindLargestItems(0, i - 1, indexSorting, workVector);

                // l(i,j) = w(j) for j = 1, .. , i -1 // only the largest lfil elements
                var lowerNonZeroCount = 0;
                var count = 0;
                for (var j = 0; j < i; j++)
                {
                    if ((count > fillLevel) || (indexSorting[j] == -1))
                    {
开发者ID:KeithVanderzanden,项目名称:mmbot,代码行数:67,代码来源:Ilutp.cs

示例2: Solve


//.........这里部分代码省略.........
            Vector nu = new DenseVector(residuals.Count);
            Vector vecS = new DenseVector(residuals.Count);
            Vector vecSdash = new DenseVector(residuals.Count);
            Vector temp = new DenseVector(residuals.Count);
            Vector temp2 = new DenseVector(residuals.Count);

            // create some temporary double variables that are needed
            // to hold values in between iterations
            Complex currentRho = 0;
            Complex alpha = 0;
            Complex omega = 0;

            var iterationNumber = 0;
            while (ShouldContinue(iterationNumber, result, input, residuals))
            {
                // rho_(i-1) = r~^T r_(i-1) // dotproduct r~ and r_(i-1)
                var oldRho = currentRho;
                currentRho = tempResiduals.DotProduct(residuals);

                // if (rho_(i-1) == 0) // METHOD FAILS
                // If rho is only 1 ULP from zero then we fail.
                if (currentRho.Real.AlmostEqual(0, 1) && currentRho.Imaginary.AlmostEqual(0, 1))
                {
                    // Rho-type breakdown
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                if (iterationNumber != 0)
                {
                    // beta_(i-1) = (rho_(i-1)/rho_(i-2))(alpha_(i-1)/omega(i-1))
                    var beta = (currentRho / oldRho) * (alpha / omega);

                    // p_i = r_(i-1) + beta_(i-1)(p_(i-1) - omega_(i-1) * nu_(i-1))
                    nu.Multiply(-omega, temp);
                    vecP.Add(temp, temp2);
                    temp2.CopyTo(vecP);

                    vecP.Multiply(beta, vecP);
                    vecP.Add(residuals, temp2);
                    temp2.CopyTo(vecP);
                }
                else
                {
                    // p_i = r_(i-1)
                    residuals.CopyTo(vecP);
                }

                // SOLVE Mp~ = p_i // M = preconditioner
                _preconditioner.Approximate(vecP, vecPdash);
                
                // nu_i = Ap~
                matrix.Multiply(vecPdash, nu);

                // alpha_i = rho_(i-1)/ (r~^T nu_i) = rho / dotproduct(r~ and nu_i)
                alpha = currentRho * 1 / tempResiduals.DotProduct(nu);

                // s = r_(i-1) - alpha_i nu_i
                nu.Multiply(-alpha, temp);
                residuals.Add(temp, vecS);

                // Check if we're converged. If so then stop. Otherwise continue;
                // Calculate the temporary result. 
                // Be careful not to change any of the temp vectors, except for
                // temp. Others will be used in the calculation later on.
                // x_i = x_(i-1) + alpha_i * p^_i + s^_i
                vecPdash.Multiply(alpha, temp);
开发者ID:EricGT,项目名称:mathnet-numerics,代码行数:67,代码来源:BiCgStab.cs

示例3: Solve

        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        public void Solve(Matrix matrix, Vector input, Vector result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Error checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch<ArgumentException>(input, matrix);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner();
            }

            _preconditioner.Initialize(matrix);

            var d = new DenseVector(input.Count);
            var r = new DenseVector(input);

            var uodd = new DenseVector(input.Count);
            var ueven = new DenseVector(input.Count);

            var v = new DenseVector(input.Count);
            var pseudoResiduals = new DenseVector(input);

            var x = new DenseVector(input.Count);
            var yodd = new DenseVector(input.Count);
            var yeven = new DenseVector(input);

            // Temp vectors
            var temp = new DenseVector(input.Count);
            var temp1 = new DenseVector(input.Count);
            var temp2 = new DenseVector(input.Count);

            // Initialize
            var startNorm = input.Norm(2);

            // Define the scalars
            double alpha = 0;
            double eta = 0;
            double theta = 0;

            var tau = startNorm;
            var rho = tau * tau;

            // Calculate the initial values for v
            // M temp = yEven
            _preconditioner.Approximate(yeven, temp);

            // v = A temp
            matrix.Multiply(temp, v);

            // Set uOdd
            v.CopyTo(ueven);

            // Start the iteration
            var iterationNumber = 0;
//.........这里部分代码省略.........
开发者ID:nrolland,项目名称:mathnet-numerics,代码行数:101,代码来源:TFQMR.cs

示例4: Solve


//.........这里部分代码省略.........
            float beta = 0;
            float sigma;

            // Define the temporary vectors
            // rDash_0 = r_0
            Vector rdash = new DenseVector(residuals);

            // t_-1 = 0
            Vector t = new DenseVector(residuals.Count);
            Vector t0 = new DenseVector(residuals.Count);

            // w_-1 = 0
            Vector w = new DenseVector(residuals.Count);

            // Define the remaining temporary vectors
            Vector c = new DenseVector(residuals.Count);
            Vector p = new DenseVector(residuals.Count);
            Vector s = new DenseVector(residuals.Count);
            Vector u = new DenseVector(residuals.Count);
            Vector y = new DenseVector(residuals.Count);
            Vector z = new DenseVector(residuals.Count);

            Vector temp = new DenseVector(residuals.Count);
            Vector temp2 = new DenseVector(residuals.Count);
            Vector temp3 = new DenseVector(residuals.Count);

            // for (k = 0, 1, .... )
            var iterationNumber = 0;
            while (ShouldContinue(iterationNumber, xtemp, input, residuals))
            {
                // p_k = r_k + beta_(k-1) * (p_(k-1) - u_(k-1))
                p.Subtract(u, temp);

                temp.Multiply(beta, temp2);
                residuals.Add(temp2, p);

                // Solve M b_k = p_k
                _preconditioner.Approximate(p, temp);

                // s_k = A b_k
                matrix.Multiply(temp, s);

                // alpha_k = (r*_0 * r_k) / (r*_0 * s_k)
                var alpha = rdash.DotProduct(residuals) / rdash.DotProduct(s);

                // y_k = t_(k-1) - r_k - alpha_k * w_(k-1) + alpha_k s_k
                s.Subtract(w, temp);
                t.Subtract(residuals, y);

                temp.Multiply(alpha, temp2);
                y.Add(temp2, temp3);
                temp3.CopyTo(y);

                // Store the old value of t in t0
                t.CopyTo(t0);

                // t_k = r_k - alpha_k s_k
                s.Multiply(-alpha, temp2);
                residuals.Add(temp2, t);

                // Solve M d_k = t_k
                _preconditioner.Approximate(t, temp);

                // c_k = A d_k
                matrix.Multiply(temp, c);
                var cdot = c.DotProduct(c);
开发者ID:nyurik,项目名称:mathnet-numerics,代码行数:67,代码来源:GpBiCg.cs

示例5: Solve


//.........这里部分代码省略.........

            // Define the temporary values
            var c = new Complex[k];

            // Define the temporary vectors
            Vector gtemp = new DenseVector(residuals.Count);

            Vector u = new DenseVector(residuals.Count);
            Vector utemp = new DenseVector(residuals.Count);
            Vector temp = new DenseVector(residuals.Count);
            Vector temp1 = new DenseVector(residuals.Count);
            Vector temp2 = new DenseVector(residuals.Count);

            Vector zd = new DenseVector(residuals.Count);
            Vector zg = new DenseVector(residuals.Count);
            Vector zw = new DenseVector(residuals.Count);

            var d = CreateVectorArray(_startingVectors.Count, residuals.Count);

            // g_0 = r_0
            var g = CreateVectorArray(_startingVectors.Count, residuals.Count);
            residuals.CopyTo(g[k - 1]);

            var w = CreateVectorArray(_startingVectors.Count, residuals.Count);

            // FOR (j = 0, 1, 2 ....)
            var iterationNumber = 0;
            while (ShouldContinue(iterationNumber, xtemp, input, residuals))
            {
                // SOLVE M g~_((j-1)k+k) = g_((j-1)k+k)
                _preconditioner.Approximate(g[k - 1], gtemp);

                // w_((j-1)k+k) = A g~_((j-1)k+k)
                matrix.Multiply(gtemp, w[k - 1]);

                // c_((j-1)k+k) = q^T_1 w_((j-1)k+k)
                c[k - 1] = _startingVectors[0].DotProduct(w[k - 1]);
                if (c[k - 1].Real.AlmostEqual(0, 1) && c[k - 1].Imaginary.AlmostEqual(0, 1))
                {
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                // alpha_(jk+1) = q^T_1 r_((j-1)k+k) / c_((j-1)k+k)
                var alpha = _startingVectors[0].DotProduct(residuals) / c[k - 1];

                // u_(jk+1) = r_((j-1)k+k) - alpha_(jk+1) w_((j-1)k+k)
                w[k - 1].Multiply(-alpha, temp);
                residuals.Add(temp, u);

                // SOLVE M u~_(jk+1) = u_(jk+1)
                _preconditioner.Approximate(u, temp1);
                temp1.CopyTo(utemp);

                // rho_(j+1) = -u^t_(jk+1) A u~_(jk+1) / ||A u~_(jk+1)||^2
                matrix.Multiply(temp1, temp);
                var rho = temp.DotProduct(temp);

                // If rho is zero then temp is a zero vector and we're probably
                // about to have zero residuals (i.e. an exact solution).
                // So set rho to 1.0 because in the next step it will turn to zero.
                if (rho.Real.AlmostEqual(0, 1) && rho.Imaginary.AlmostEqual(0, 1))
                {
                    rho = 1.0;
                }

                rho = -u.DotProduct(temp) / rho;
开发者ID:KeithVanderzanden,项目名称:mmbot,代码行数:67,代码来源:MlkBiCgStab.cs


注:本文中的DenseVector.Multiply方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。