本文整理汇总了C#中Coordinate.Equals2D方法的典型用法代码示例。如果您正苦于以下问题:C# Coordinate.Equals2D方法的具体用法?C# Coordinate.Equals2D怎么用?C# Coordinate.Equals2D使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Coordinate
的用法示例。
在下文中一共展示了Coordinate.Equals2D方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Compare
/// <summary>
/// Compares two <see cref="Coordinate" />s for their relative position along a segment
/// lying in the specified <see cref="Octant" />.
/// </summary>
/// <param name="octant"></param>
/// <param name="p0"></param>
/// <param name="p1"></param>
/// <returns>
/// -1 if node0 occurs first, or
/// 0 if the two nodes are equal, or
/// 1 if node1 occurs first.
/// </returns>
public static int Compare(OctantDirection octant, Coordinate p0, Coordinate p1)
{
// nodes can only be equal if their coordinates are equal
if (p0.Equals2D(p1))
return 0;
int xSign = RelativeSign(p0.X, p1.X);
int ySign = RelativeSign(p0.Y, p1.Y);
switch (octant)
{
case OctantDirection.Zero:
return CompareValue(xSign, ySign);
case OctantDirection.One:
return CompareValue(ySign, xSign);
case OctantDirection.Two:
return CompareValue(ySign, -xSign);
case OctantDirection.Three:
return CompareValue(-xSign, ySign);
case OctantDirection.Four:
return CompareValue(-xSign, -ySign);
case OctantDirection.Five:
return CompareValue(-ySign, -xSign);
case OctantDirection.Six:
return CompareValue(-ySign, xSign);
case OctantDirection.Seven:
return CompareValue(xSign, -ySign);
}
throw new InvalidOctantException(octant.ToString());
}
示例2: Compare
/// <summary>
/// Compares two <see cref="Coordinate" />s for their relative position along a segment
/// lying in the specified <see cref="Octant" />.
/// </summary>
/// <param name="octant"></param>
/// <param name="p0"></param>
/// <param name="p1"></param>
/// <returns>
/// -1 if node0 occurs first, or<br/>
/// 0 if the two nodes are equal, or <br/>
/// 1 if node1 occurs first.
/// </returns>
public static int Compare(Octants octant, Coordinate p0, Coordinate p1)
{
// nodes can only be equal if their coordinates are equal
if (p0.Equals2D(p1))
return 0;
var xSign = RelativeSign(p0.X, p1.X);
var ySign = RelativeSign(p0.Y, p1.Y);
switch (octant)
{
case Octants.Zero:
return CompareValue(xSign, ySign);
case Octants.One:
return CompareValue(ySign, xSign);
case Octants.Two:
return CompareValue(ySign, -xSign);
case Octants.Three:
return CompareValue(-xSign, ySign);
case Octants.Four:
return CompareValue(-xSign, -ySign);
case Octants.Five:
return CompareValue(-ySign, -xSign);
case Octants.Six:
return CompareValue(-ySign, xSign);
case Octants.Seven:
return CompareValue(xSign, -ySign);
}
Assert.ShouldNeverReachHere("invalid octant value: " + octant);
return 0;
}
示例3: SplitAt
public void SplitAt(double length, Coordinate endPt)
{
double actualLen = GetConstrainedLength(length);
double frac = actualLen/_segLen;
if (endPt.Equals2D(_seg.P0))
_splitPt = _seg.PointAlong(frac);
else
_splitPt = PointAlongReverse(_seg, frac);
}
示例4: ComputeIntersect
public override int ComputeIntersect(Coordinate p1, Coordinate p2, Coordinate q1, Coordinate q2)
{
IsProper = false;
// first try a fast test to see if the envelopes of the lines intersect
if (!Envelope.Intersects(p1, p2, q1, q2))
return NoIntersection;
// for each endpoint, compute which side of the other segment it lies
// if both endpoints lie on the same side of the other segment,
// the segments do not intersect
int Pq1 = CGAlgorithms.OrientationIndex(p1, p2, q1);
int Pq2 = CGAlgorithms.OrientationIndex(p1, p2, q2);
if ((Pq1 > 0 && Pq2 > 0) ||
(Pq1 < 0 && Pq2 < 0))
return NoIntersection;
int Qp1 = CGAlgorithms.OrientationIndex(q1, q2, p1);
int Qp2 = CGAlgorithms.OrientationIndex(q1, q2, p2);
if ((Qp1 > 0 && Qp2 > 0) ||
(Qp1 < 0 && Qp2 < 0))
return NoIntersection;
bool collinear = Pq1 == 0 && Pq2 == 0 && Qp1 == 0 && Qp2 == 0;
if (collinear)
return ComputeCollinearIntersection(p1, p2, q1, q2);
/*
* At this point we know that there is a single intersection point
* (since the lines are not collinear).
*/
/*
* Check if the intersection is an endpoint. If it is, copy the endpoint as
* the intersection point. Copying the point rather than computing it
* ensures the point has the exact value, which is important for
* robustness. It is sufficient to simply check for an endpoint which is on
* the other line, since at this point we know that the inputLines must
* intersect.
*/
if (Pq1 == 0 || Pq2 == 0 || Qp1 == 0 || Qp2 == 0)
{
IsProper = false;
/*
* Check for two equal endpoints.
* This is done explicitly rather than by the orientation tests
* below in order to improve robustness.
*
* [An example where the orientation tests fail to be consistent is
* the following (where the true intersection is at the shared endpoint
* POINT (19.850257749638203 46.29709338043669)
*
* LINESTRING ( 19.850257749638203 46.29709338043669, 20.31970698357233 46.76654261437082 )
* and
* LINESTRING ( -48.51001596420236 -22.063180333403878, 19.850257749638203 46.29709338043669 )
*
* which used to produce the INCORRECT result: (20.31970698357233, 46.76654261437082, NaN)
*
*/
if (p1.Equals2D(q1) || p1.Equals2D(q2))
IntersectionPoint[0] = p1;
else if (p2.Equals2D(q1) || p2.Equals2D(q2))
IntersectionPoint[0] = p2;
else if (Pq1 == 0)
IntersectionPoint[0] = new Coordinate(q1);
else if (Pq2 == 0)
IntersectionPoint[0] = new Coordinate(q2);
else if (Qp1 == 0)
IntersectionPoint[0] = new Coordinate(p1);
else if (Qp2 == 0)
IntersectionPoint[0] = new Coordinate(p2);
}
else
{
IsProper = true;
IntersectionPoint[0] = Intersection(p1, p2, q1, q2);
}
return PointIntersection;
}