当前位置: 首页>>代码示例>>C#>>正文


C# ComputeCommandQueue.Execute方法代码示例

本文整理汇总了C#中ComputeCommandQueue.Execute方法的典型用法代码示例。如果您正苦于以下问题:C# ComputeCommandQueue.Execute方法的具体用法?C# ComputeCommandQueue.Execute怎么用?C# ComputeCommandQueue.Execute使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ComputeCommandQueue的用法示例。


在下文中一共展示了ComputeCommandQueue.Execute方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: ConductSearch

        private static void ConductSearch(ComputeContext context, ComputeKernel kernel)
        {
            var todos = GetQueenTaskPartition(NumQueens, 4);
            var done = new List<QueenTask>();

            ComputeEventList eventList = new ComputeEventList();

            var commands = new ComputeCommandQueue(context, context.Devices[1], ComputeCommandQueueFlags.None);

            Console.WriteLine("Starting {0} tasks, and working {1} at a time.", todos.Count, Spread);

            QueenTask[] inProgress = GetNextAssignment(new QueenTask[] {}, todos, done);

            var sw = new Stopwatch();
            sw.Start();

            while (inProgress.Any())
            {
                var taskBuffer =
                    new ComputeBuffer<QueenTask>(context,
                        ComputeMemoryFlags.ReadWrite | ComputeMemoryFlags.CopyHostPointer,
                        inProgress);

                kernel.SetMemoryArgument(0, taskBuffer);
                commands.WriteToBuffer(inProgress, taskBuffer, false, null);

                for (int i = 0; i < 12; i++)
                    commands.Execute(kernel, null, new long[] { inProgress.Length }, null, eventList);

                commands.ReadFromBuffer(taskBuffer, ref inProgress, false, eventList);
                commands.Finish();

                inProgress = GetNextAssignment(inProgress, todos, done);
            }

            sw.Stop();

            Console.WriteLine(sw.ElapsedMilliseconds / 1000.0);

            ulong sum = done.Select(state => state.solutions)
                            .Aggregate((total, next) => total + next);

            Console.WriteLine("Q({0})={1}", NumQueens, sum);
        }
开发者ID:peterallenwebb,项目名称:GpuQueens,代码行数:44,代码来源:Program.cs

示例2: EndSend

            public unsafe void EndSend()
            {
                for (int i = 0; i < points.Count; i++)
                {
                  inx[i].x = (float)points[i].Item3.Real;
                  inx[i].y = (float)points[i].Item3.Imaginary;
                  inc[i].x = (float)points[i].Item4.Real;
                  inc[i].y = (float)points[i].Item4.Imaginary;
                }

                _krnl.SetMemoryArgument(0, x);
                _krnl.SetMemoryArgument(1, c);
                for (int i = 0; i < _ld.Count; i++)
                {
                  _krnl.SetMemoryArgument(2 + i, outp[i]);
                }

                ComputeCommandQueue command = new ComputeCommandQueue(_context, _context.Devices[0], ComputeCommandQueueFlags.None);
                command.WriteToBuffer(inx, x, false, null);
                command.WriteToBuffer(inc, c, false, null);

                command.Execute(_krnl, null, new long[] { points.Count }, null, null);

                for (int i = 0; i < _ld.Count; i++)
                  command.ReadFromBuffer(outp[i], ref opl[i], false, null);

                command.Finish();

                output = new Queue<Tuple<int, int, List<ProcessLayer>>>();

                for (int i = 0; i < points.Count; i++)
                {
                  List<ProcessLayer> pl = new List<ProcessLayer>();
                  for (int ii = 0; ii < _ld.Count; ii++)
                  {
                ProcessLayer p = _ld[ii].Clone();
                p.c_active = opl[ii][i].c_active != 0;
                p.c_calc = opl[ii][i].c_calc;
                p.c_cmean = opl[ii][i].c_cmean;
                p.c_cvariance = opl[ii][i].c_cvariance;
                p.c_cvarsx = opl[ii][i].c_cvarsx;
                p.c_isin = opl[ii][i].c_isin != 0;
                p.c_n = opl[ii][i].c_n;
                p.c_old2x = new Complex(opl[ii][i].c_old2x.x,opl[ii][i].c_old2x.y);
                p.c_oldx = new Complex(opl[ii][i].c_oldx.x,opl[ii][i].c_oldx.y);
                p.c_resn = opl[ii][i].c_resn;
                p.c_resx = new Complex(opl[ii][i].c_resx.x,opl[ii][i].c_resx.y);
                p.c_x = new Complex(opl[ii][i].c_x.x,opl[ii][i].c_x.y);
                pl.Add(p);
                  }
                  output.Enqueue(Tuple.Create(points[i].Item1, points[i].Item2, pl));
                }
            }
开发者ID:sztupy,项目名称:RestFract,代码行数:53,代码来源:OpenCLCalculatorFactory.cs

示例3: Run

        public void Run(ComputeContext context, TextWriter log)
        {
            try
            {
                // Create the arrays and fill them with random data.
                int count = 640*480; // 
                float[] arrA = new float[count];
                float[] arrB = new float[count];
                float[] arrC = new float[count];

                Random rand = new Random();
                for (int i = 0; i < count; i++)
                {
                    arrA[i] = (float)(rand.NextDouble() * 100);
                    arrB[i] = (float)(rand.NextDouble() * 100);
                }

                
                // Create the input buffers and fill them with data from the arrays.
                // Access modifiers should match those in a kernel.
                // CopyHostPointer means the buffer should be filled with the data provided in the last argument.
                

                program = new ComputeProgram(context, clProgramSource);
                program.Build(null, null, null, IntPtr.Zero);

                ComputeBuffer<float> a = new ComputeBuffer<float>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, arrA);
                //ComputeBuffer<float> b = new ComputeBuffer<float>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, arrB);

                // The output buffer doesn't need any data from the host. Only its size is specified (arrC.Length).
                ComputeBuffer<float> c = new ComputeBuffer<float>(context, ComputeMemoryFlags.WriteOnly, arrC.Length);

                // Create and build the opencl program.
                
                // Create the kernel function and set its arguments.
                ComputeKernel kernel = program.CreateKernel("CompareGPUCPU");
                DateTime ExecutionStartTime; //Var will hold Execution Starting Time
                DateTime ExecutionStopTime;//Var will hold Execution Stopped Time
                TimeSpan ExecutionTime;//Var will count Total Execution Time-Our Main Hero                
                ComputeCommandQueue commands = new ComputeCommandQueue(context, context.Devices[0], ComputeCommandQueueFlags.None);
                
                ExecutionStartTime = DateTime.Now; //Gets the system Current date time expressed as local time
                int repeatTimes = 100;
                for (int repeatCounter = 0; repeatCounter < repeatTimes; repeatCounter++)
                {
                    kernel.SetMemoryArgument(0, a);
                    //kernel.SetMemoryArgument(1, b);
                    //kernel.SetMemoryArgument(2, c);
                    kernel.SetMemoryArgument(1, c);

                    // Create the event wait list. An event list is not really needed for this example but it is important to see how it works.
                    // Note that events (like everything else) consume OpenCL resources and creating a lot of them may slow down execution.
                    // For this reason their use should be avoided if possible.
                    //ComputeEventList eventList = new ComputeEventList();

                    // Create the command queue. This is used to control kernel execution and manage read/write/copy operations.
                  

                    // Execute the kernel "count" times. After this call returns, "eventList" will contain an event associated with this command.
                    // If eventList == null or typeof(eventList) == ReadOnlyCollection<ComputeEventBase>, a new event will not be created.
                    //commands.Execute(kernel, null, new long[] { count }, null, eventList);
                    commands.Execute(kernel, null, new long[] { count }, null, null);

                    // Read back the results. If the command-queue has out-of-order execution enabled (default is off), ReadFromBuffer 
                    // will not execute until any previous events in eventList (in our case only eventList[0]) are marked as complete 
                    // by OpenCL. By default the command-queue will execute the commands in the same order as they are issued from the host.
                    // eventList will contain two events after this method returns.
                    //commands.ReadFromBuffer(c, ref arrC, false, eventList);
                    commands.ReadFromBuffer(c, ref arrC, false, null);

                    // A blocking "ReadFromBuffer" (if 3rd argument is true) will wait for itself and any previous commands
                    // in the command queue or eventList to finish execution. Otherwise an explicit wait for all the opencl commands 
                    // to finish has to be issued before "arrC" can be used. 
                    // This explicit synchronization can be achieved in two ways:

                    // 1) Wait for the events in the list to finish,
                    //eventList.Wait();

                    // 2) Or simply use
                    commands.Finish();
                }
                ExecutionStopTime = DateTime.Now;
                ExecutionTime = ExecutionStopTime - ExecutionStartTime;
                double perTaskTime = ExecutionTime.TotalMilliseconds / repeatTimes;
                log.WriteLine("Use {0} ms using GPU", perTaskTime);
 
                // Do that using CPU
                /*
                ExecutionStartTime = DateTime.Now; //Gets the system Current date time expressed as local time
                for (int repeatCounter = 0; repeatCounter < repeatTimes; repeatCounter++)
                {
                    for (int i = 0; i < count; i++)
                    {
                        //arrC[i] = arrA[i] + arrB[i];
                        int j;
                        for (j = 0; j < 330 * 10; j++)
                            arrC[i] = arrA[i] + j;
                    }
                }
                ExecutionStopTime = DateTime.Now;
//.........这里部分代码省略.........
开发者ID:arunganesan,项目名称:hand-gesture-recognition,代码行数:101,代码来源:CompareGPUCPU.cs

示例4: notify

        private unsafe void notify(CLProgramHandle programHandle, IntPtr userDataPtr)
        {
            uint[] dst = new uint[16];

            fixed (uint* dstPtr = dst)
            {
                using (var queue = new ComputeCommandQueue(ccontext, device, ComputeCommandQueueFlags.None))
                {
                    var buf = new ComputeBuffer<uint>(ccontext, ComputeMemoryFlags.WriteOnly, 16);

                    var kernel = program.CreateKernel("test");
                    kernel.SetValueArgument(0, 1443351125U);
                    kernel.SetMemoryArgument(1, buf);

                    var eventList = new ComputeEventList();

                    queue.Execute(kernel, null, new long[] { 16L, 256L, 1048576L }, null, null);
                    queue.Finish();
                    queue.Read<uint>(buf, true, 0, 16, (IntPtr)dstPtr, null);
                    queue.Finish();
                    queue.Finish();
                }
            }
        }
开发者ID:furyan,项目名称:MatriXMiner,代码行数:24,代码来源:ClooPlugin.cs

示例5: RunInternal

        protected override void RunInternal()
        {
            int count = 10;
            float[] arrA = new float[count];
            float[] arrB = new float[count];
            float[] arrC = new float[count];

            Random rand = new Random();

            for (int i = 0; i < count; i++)
            {
                arrA[i] = (float)(rand.NextDouble() * 100);
                arrB[i] = (float)(rand.NextDouble() * 100);
            }

            ComputeBuffer<float> a = new ComputeBuffer<float>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, arrA);
            ComputeBuffer<float> b = new ComputeBuffer<float>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, arrB);
            ComputeBuffer<float> c = new ComputeBuffer<float>(context, ComputeMemoryFlags.WriteOnly, arrC.Length);

            ComputeProgram program = new ComputeProgram(context, new string[] { kernelSource });
            program.Build(null, null, null, IntPtr.Zero);

            ComputeKernel kernel = program.CreateKernel("VectorAdd");
            kernel.SetMemoryArgument(0, a);
            kernel.SetMemoryArgument(1, b);
            kernel.SetMemoryArgument(2, c);

            ComputeCommandQueue commands = new ComputeCommandQueue(context, context.Devices[0], ComputeCommandQueueFlags.None);

            ComputeEventList events = new ComputeEventList();

            commands.Execute(kernel, null, new long[] { count }, null, events);

            arrC = new float[count];
            GCHandle arrCHandle = GCHandle.Alloc(arrC, GCHandleType.Pinned);

            commands.Read(c, false, 0, count, arrCHandle.AddrOfPinnedObject(), events);
            commands.Finish();

            arrCHandle.Free();

            for (int i = 0; i < count; i++)
                Console.WriteLine("{0} + {1} = {2}", arrA[i], arrB[i], arrC[i]);
        }
开发者ID:yeerkkiller1,项目名称:Go-AI,代码行数:44,代码来源:VectorAddTest.cs

示例6: CalculateConvolution

        private void CalculateConvolution(ComputeContext computeContext)
        {
            Stopwatch stopwatch = new Stopwatch();
            stopwatch.Start();

            float dx;
            bool shiftXParse = float.TryParse(textBoxShiftX.Text, NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out dx);
            if (!shiftXParse)
                throw new SyntaxErrorException(", needs to be .");

            float dy;
            bool shiftYParse = float.TryParse(textBoxShiftX.Text, NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out dy);
            if (!shiftYParse)
                throw new SyntaxErrorException(", needs to be  .");

            float dz;
            bool shiftZParse = float.TryParse(textBoxShiftX.Text, NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out dz);
            if (!shiftZParse)
                throw new SyntaxErrorException(", needs to be  .");

            int pixelCount = _imageDimensionX*_imageDimensionY*_imageDimensionZ;

            Console.WriteLine("Computing...");
            Console.WriteLine("Reading kernel...");

            String kernelPath = Directory.GetParent(Directory.GetCurrentDirectory()).Parent.Parent.FullName;

            String kernelString;
            using (var sr = new StreamReader(kernelPath + "\\convolution.cl"))
                kernelString = sr.ReadToEnd();

            Console.WriteLine("Reading kernel... done");

            float[] selectedTransformation = Transformations.GetTransformation((TransformationType)comboBoxTransform.SelectedItem, 1.0f / float.Parse(textBoxPixelSize.Text), 1.0f / float.Parse(textBoxPixelSize.Text), 1.0f / float.Parse(textBoxPixelSize.Text), dx, dy, dz);

            //create openCL program
            ComputeProgram computeProgram = new ComputeProgram(computeContext, kernelString);

            computeProgram.Build(computeContext.Devices, null, null, IntPtr.Zero);

            ComputeProgramBuildStatus computeProgramBuildStatus = computeProgram.GetBuildStatus(_selectedComputeDevice);
            Console.WriteLine("computeProgramBuildStatus\n\t"+computeProgramBuildStatus);

            String buildLog = computeProgram.GetBuildLog(_selectedComputeDevice);
            Console.WriteLine("buildLog");
            if (buildLog.Equals("\n"))
                Console.WriteLine("\tbuildLog is empty...");
            else
                Console.WriteLine("\t" + buildLog);

            float[] fluorophores = CsvData.ReadFluorophores(_sourceFilename);

            /////////////////////////////////////////////
            // Create a Command Queue & Event List
            /////////////////////////////////////////////
            ComputeCommandQueue computeCommandQueue = new ComputeCommandQueue(computeContext, _selectedComputeDevice, ComputeCommandQueueFlags.None);

            ////////////////////////////////////////////////////////////////
            // Create Buffers Transform
            ////////////////////////////////////////////////////////////////
            ComputeBuffer<float> fluorophoresCoords = new ComputeBuffer<float>(computeContext, ComputeMemoryFlags.ReadWrite, fluorophores.LongLength);

            ComputeBuffer<float> transformationMatrix = new ComputeBuffer<float>(computeContext, ComputeMemoryFlags.ReadOnly, selectedTransformation.LongLength);

            /////////////////////////////////////////////
            // Create the transformFluorophoresKernel
            ///////////////////////////////////////////////////////////
            ComputeKernel transformFluorophoresKernel = computeProgram.CreateKernel("transform_fluorophores");

            /////////////////////////////////////////////
            // Set the transformFluorophoresKernel arguments
            /////////////////////////////////////////////
            transformFluorophoresKernel.SetMemoryArgument(0, fluorophoresCoords);
            transformFluorophoresKernel.SetMemoryArgument(1, transformationMatrix);

            /////////////////////////////////////////////
            // Configure the work-item structure
            /////////////////////////////////////////////
            long[] globalWorkOffsetTransformFluorophoresKernel = null;
            long[] globalWorkSizeTransformFluorophoresKernel = new long[]   { fluorophores.Length / 4 };
            long[] localWorkSizeTransformFluorophoresKernel = null;

            ////////////////////////////////////////////////////////
            // Enqueue the transformFluorophoresKernel for execution
            ////////////////////////////////////////////////////////

            computeCommandQueue.WriteToBuffer(fluorophores, fluorophoresCoords, true, null);
            computeCommandQueue.WriteToBuffer(selectedTransformation, transformationMatrix, true, null);

            computeCommandQueue.Execute(transformFluorophoresKernel, globalWorkOffsetTransformFluorophoresKernel, globalWorkSizeTransformFluorophoresKernel, localWorkSizeTransformFluorophoresKernel, null);
            //            computeCommandQueue.ExecuteTask(transformFluorophoresKernel, transformFluorophoresEvents);

            float[] transformedFluorophores = new float[fluorophores.Length];

            computeCommandQueue.ReadFromBuffer(fluorophoresCoords, ref transformedFluorophores, true, null);

            computeCommandQueue.Finish();

            //TODO remove, only for testing
            //            for (int i = 0; i < transformedFluorophores.Length; i++)
//.........这里部分代码省略.........
开发者ID:jalmar,项目名称:DoM_Utrecht-GPU,代码行数:101,代码来源:Form1.cs

示例7: Test

        public static void Test()
        {
            string source = File.ReadAllText("MonteCarloSimulate.cl");

            //Choose Device
            ComputePlatform platform = ComputePlatform.Platforms[0];

            ComputeDevice device = platform.QueryDevices()[0];

            ComputeContextPropertyList properties =
                new ComputeContextPropertyList(platform);

            //Setup of stuff on our side
            ComputeContext context = new ComputeContext(ComputeDeviceTypes.All,
                properties, null, IntPtr.Zero);

            //Build the program, which gets us the kernel
            ComputeProgram program = new ComputeProgram(context, source);
            program.Build(null, null, null, IntPtr.Zero);
            //can use notify as the 3rd command... if you want this to be non-blocking

            ComputeKernel kernel = program.CreateKernel("MonteCarloSimulate");


            //Create arguments
            int sideSize = 4096;
            int[] inMatrixA = new int[sideSize * sideSize];
            int[] inMatrixB = new int[sideSize * sideSize];
            int[] outMatrixC = new int[sideSize * sideSize];
            Random random = new Random((int)DateTime.Now.Ticks);

            if (sideSize <= 32)
                for (int y = 0; y < sideSize; y++)
                    for (int x = 0; x < sideSize; x++)
                    {
                        inMatrixA[y * sideSize + x] = random.Next(3);
                        inMatrixB[y * sideSize + x] = random.Next(3);
                        outMatrixC[y * sideSize + x] = 0;
                    }


            ComputeBuffer<int> bufferMatrixA = new ComputeBuffer<int>(context,
                ComputeMemoryFlags.UseHostPointer, inMatrixA);

            ComputeBuffer<int> bufferMatrixB = new ComputeBuffer<int>(context,
                ComputeMemoryFlags.UseHostPointer, inMatrixB);

            ComputeBuffer<int> bufferMatrixC = new ComputeBuffer<int>(context,
                ComputeMemoryFlags.UseHostPointer, outMatrixC);

            long localWorkSize = Math.Min(device.MaxComputeUnits, sideSize);


            //Sets arguments
            kernel.SetMemoryArgument(0, bufferMatrixA);
            kernel.SetMemoryArgument(1, bufferMatrixB);
            kernel.SetMemoryArgument(2, bufferMatrixC);
            kernel.SetLocalArgument(3, sideSize * 2);
            kernel.SetValueArgument<int>(4, sideSize);
            //kernel.SetLocalArgument(1, localWorkSize);            

            string offset = " ";
            for (int x = 0; x < sideSize; x++)
                offset += "  ";

            if (sideSize <= 32)
                for (int y = 0; y < sideSize; y++)
                {
                    Console.Write(offset);
                    for (int x = 0; x < sideSize; x++)
                        Console.Write(inMatrixA[y * sideSize + x] + " ");
                    Console.WriteLine();
                }




            //Runs commands
            ComputeCommandQueue commands = new ComputeCommandQueue(context,
                context.Devices[0], ComputeCommandQueueFlags.None);

            long executionTime = DateTime.Now.Ticks;

            //Execute kernel
            //globalWorkSize in increments of localWorkSize (max of device.MaxComputeUnits or kernel.GetWorkGroupSize())
            commands.Execute(kernel, null,
                new long[] { Math.Min(sideSize, 16), Math.Min(sideSize, 16) },
                new long[] { localWorkSize, 1 }, null);

            //globalWorkSize can be any size
            //localWorkSize product much not be greater than device.MaxComputeUnits
            //and it must not be greater than kernel.GetWorkGroupSize()
            //ESSENTIALLY, the program iterates through globalWorkSize
            //in increments of localWorkSize. Both are multidimensional,
            //but this just saves us the time of doing that
            //(1 dimension can be put to multiple if the max dimension lengths
            //are known very easily with remainder).

            //Also, you should probably use this
            //kernel.GetPreferredWorkGroupSizeMultiple(device);
//.........这里部分代码省略.........
开发者ID:yeerkkiller1,项目名称:Go-AI,代码行数:101,代码来源:Program.cs

示例8: CoreRender

 private static void CoreRender(ComputeMemory buffer, ComputeCommandQueue queue, IEnumerable<ComputeKernel> kernels, Vector4 position, Vector4 lookat, Vector4 up, int frame, float fov, int slowRenderCount, float focalDistance, int width, int height, long[] globalSize, long[] localSize)
 {
     foreach (var kernel in kernels)
     {
         kernel.SetMemoryArgument(0, buffer);
         kernel.SetValueArgument(1, width);
         kernel.SetValueArgument(2, height);
         kernel.SetValueArgument(3, position);
         kernel.SetValueArgument(4, lookat);
         kernel.SetValueArgument(5, up);
         kernel.SetValueArgument(6, frame);
         kernel.SetValueArgument(7, fov);
         kernel.SetValueArgument(8, slowRenderCount);
         kernel.SetValueArgument(9, focalDistance);
         queue.Execute(kernel, LaunchSize, globalSize, localSize, null);
     }
 }
开发者ID:khyperia,项目名称:Scatterlight,代码行数:17,代码来源:KernelManager.cs

示例9: Execute

                /// <summary>Execute this kernel</summary>
                /// <param name="CQ">Command queue to use</param>
                /// <param name="Arguments">Arguments of the kernel function</param>
                /// <param name="GlobalWorkSize">Array of maximum index arrays. Total work-items = product(max[i],i+0..n-1), n=max.Length</param>
                /// <param name="LocalWorkSize">Local work sizes</param>
                /// <param name="events">Event of this command</param>
                public void Execute(ComputeCommandQueue CQ, CLCalc.Program.MemoryObject[] Arguments, int[] GlobalWorkSize, int[] LocalWorkSize, ICollection<ComputeEventBase> events)
                {
                    SetArguments(Arguments);
                    if (LocalWorkSize != null && GlobalWorkSize.Length != LocalWorkSize.Length) throw new Exception("Global and local work size must have same dimension");

                    long[] globWSize = new long[GlobalWorkSize.Length];
                    for (int i = 0; i < globWSize.Length; i++) globWSize[i] = GlobalWorkSize[i];
                    long[] locWSize = null;

                    if (LocalWorkSize != null)
                    {
                        locWSize = new long[LocalWorkSize.Length];
                        for (int i = 0; i < locWSize.Length; i++) locWSize[i] = LocalWorkSize[i];
                    }

                    CQ.Execute(kernel, null, globWSize, locWSize, events);
                }
开发者ID:hrehfeld,项目名称:opencltemplate,代码行数:23,代码来源:CLCalc.cs

示例10: Render

        public void Render(ComputeBuffer<Vector4> buffer, ComputeCommandQueue queue, IParameterSet parameters,
            Size windowSize, int numBlocks, Size coordinates, int bufferWidth = 0)
        {
            lock (_kernelLock)
            {
                if (_kernel == null)
                    return;

                var size = new long[] { windowSize.Width, windowSize.Height };
                var localSize = Threadsize(queue);

                var offset = new long[size.Length];
                var offsetCoords = new long[] { coordinates.Width, coordinates.Height };

                if (numBlocks > 0)
                {
                    for (var i = 0; i < size.Length; i++)
                        size[i] = numBlocks * localSize[i];
                    for (var i = 0; i < size.Length; i++)
                        offset[i] = size[i] * offsetCoords[i];
                }

                var globalSize = GlobalLaunchsizeFor(localSize, size);

                var kernelNumArgs = 0;
                _kernel.SetMemoryArgument(kernelNumArgs++, buffer);
                _kernel.SetValueArgument(kernelNumArgs++, bufferWidth);
                _kernel.SetValueArgument(kernelNumArgs++, windowSize.Width);
                _kernel.SetValueArgument(kernelNumArgs++, windowSize.Height);
                parameters.ApplyToKernel(_kernel, _useDouble, ref kernelNumArgs);

                queue.Execute(_kernel, offset, globalSize, localSize, null);
            }
        }
开发者ID:khyperia,项目名称:Clam,代码行数:34,代码来源:RenderKernel.cs

示例11: Calculate

        public static void Calculate(List<Calculation> calculations)
        {
            Stopwatch s = new Stopwatch();
            s.Start();

            int count = calculations.Count;

            IntVec2[] p_p = new IntVec2[count];

            IntVec2[] p_a = new IntVec2[count];
            IntVec2[] p_b = new IntVec2[count];
            IntVec2[] p_c = new IntVec2[count];

            FloatVec3[] c = new FloatVec3[count];

            int[] c_valid = new int[count];

            Parallel.For(0, count, i =>
            {
                var calc = calculations[i];

                p_p[i] = new IntVec2(calc.P);
                p_a[i] = new IntVec2(calc.A);
                p_b[i] = new IntVec2(calc.B);
                p_c[i] = new IntVec2(calc.C);
            });

            mark(s, "memory init");

            ComputeBuffer<IntVec2> _p_p = new ComputeBuffer<IntVec2>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, p_p);

            ComputeBuffer<IntVec2> _p_a = new ComputeBuffer<IntVec2>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, p_a);

            ComputeBuffer<IntVec2> _p_b = new ComputeBuffer<IntVec2>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, p_b);

            ComputeBuffer<IntVec2> _p_c = new ComputeBuffer<IntVec2>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, p_c);

            ComputeBuffer<FloatVec3> _c = new ComputeBuffer<FloatVec3>(context, ComputeMemoryFlags.WriteOnly, c.Length);
            ComputeBuffer<int> _c_valid = new ComputeBuffer<int>(context, ComputeMemoryFlags.WriteOnly, c_valid.Length);

            mark(s, "memory buffer init");

            ComputeKernel kernel = program.CreateKernel("Barycentric");
            kernel.SetMemoryArgument(0, _p_p);

            kernel.SetMemoryArgument(1, _p_a);

            kernel.SetMemoryArgument(2, _p_b);

            kernel.SetMemoryArgument(3, _p_c);

            kernel.SetMemoryArgument(4, _c);
            kernel.SetMemoryArgument(5, _c_valid);

            mark(s, "memory init 2");

            ComputeEventList eventList = new ComputeEventList();

            ComputeCommandQueue commands = new ComputeCommandQueue(context, context.Devices[0], ComputeCommandQueueFlags.None);

            commands.Execute(kernel, null, new long[] { count }, null, eventList);

            mark(s, "execute");

            commands.ReadFromBuffer(_c, ref c, false, eventList);
            commands.ReadFromBuffer(_c_valid, ref c_valid, false, eventList);
            commands.Finish();

            mark(s, "read 1");

            Parallel.For(0, count, i =>
            {
                var calc = calculations[i];
                calc.Coords = new BarycentricCoordinates(c[i].U,c[i].V,c[i].W);

                if (c_valid[i] == 1)
                {
                    lock (calc.Tri)
                        calc.Tri.Points.Add(new DrawPoint(calc.Coords, calc.P));
                }
            });

            mark(s, "read 2");

            // cleanup commands
            commands.Dispose();

            // cleanup events
            foreach (ComputeEventBase eventBase in eventList)
            {
                eventBase.Dispose();
            }
            eventList.Clear();

            // cleanup kernel
            kernel.Dispose();

            _p_p.Dispose();

            _p_a.Dispose();
//.........这里部分代码省略.........
开发者ID:ruarai,项目名称:Trigrad,代码行数:101,代码来源:GPUT.cs

示例12: Main

        static void Main(string[] args)
        {
            #region
            const string programName = "Prime Number";

            Stopwatch stopWatch = new Stopwatch();

            string clProgramSource = KernelProgram();

            Console.WriteLine("Environment OS:");
            Console.WriteLine("-----------------------------------------");
            Console.WriteLine(Environment.OSVersion);
            #endregion
            if (ComputePlatform.Platforms.Count == 0)
            {
                Console.WriteLine("No OpenCL Platforms are availble!");
            }
            else
            {
                #region 1
                // step 1 choose the first available platform
                ComputePlatform platform = ComputePlatform.Platforms[0];

                // output the basic info
                BasicInfo(platform);

                Console.WriteLine("Program: " + programName);
                Console.WriteLine("-----------------------------------------");
                #endregion
                //Cpu 10 seconds Gpu 28 seconds
                int count = 64;

                int[] output_Z = new int[count * count * count];

                int[] input_X = new int[count * count * count];

                for (int x = 0; x < count * count * count; x++)
                {
                    input_X[x] = x;
                }
                #region 2
                // step 2 create context for that platform and all devices
                ComputeContextPropertyList properties = new ComputeContextPropertyList(platform);
                ComputeContext context = new ComputeContext(platform.Devices, properties, null, IntPtr.Zero);

                // step 3 create and build program
                ComputeProgram program = new ComputeProgram(context, clProgramSource);
                program.Build(platform.Devices, null, null, IntPtr.Zero);
                #endregion
                // step 4 create memory objects
                ComputeBuffer<int> a = new ComputeBuffer<int>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, input_X);
                ComputeBuffer<int> z = new ComputeBuffer<int>(context, ComputeMemoryFlags.WriteOnly, output_Z.Length);

                // step 5 create kernel object with same kernel programe name VectorAdd
                ComputeKernel kernel = program.CreateKernel("PrimeNumber");

                // step 6 set kernel arguments
                //kernel.SetMemoryArgument(0, a);
                kernel.SetMemoryArgument(0, a);
                kernel.SetMemoryArgument(1, z);

                ComputeEventList eventList = new ComputeEventList();

                //for (int j = 0; j < context.Devices.Count; j++)
                // query available devices n,...,1,0.  cpu first then gpu
                for (int j = context.Devices.Count-1; j > -1; j--)
                {
                    #region 3
                    stopWatch.Start();

                    // step 7 create command queue on that context on that device
                    ComputeCommandQueue commands = new ComputeCommandQueue(context, context.Devices[j], ComputeCommandQueueFlags.None);

                    // step 8 run the kernel program
                    commands.Execute(kernel, null, new long[] { count, count, count }, null, eventList);
                    //Application.DoEvents();

                    #endregion
                    // step 9 read results
                    commands.ReadFromBuffer(z, ref output_Z, false, eventList);
                    #region 4
                    commands.Finish();

                    string fileName = "C:\\primenumber\\PrimeNumberGPU.txt";
                    StreamWriter file = new StreamWriter(fileName, true);

                    FileInfo info = new FileInfo(fileName);
                    long fs = info.Length;

                    // 1 MegaByte = 1.049e+6 Byte
                    int index = 1;
                    if (fs == 1.049e+6)
                    {
                        fileName = "C:\\primenumber\\PrimeNumberGPU" + index.ToString() + ".txt";
                        file = new System.IO.StreamWriter(fileName, true);
                        index++;
                    }
                    #endregion

                    for (uint xx = 0; xx < count * count * count; xx++)
//.........这里部分代码省略.........
开发者ID:allen-ecu,项目名称:PrimeNumber,代码行数:101,代码来源:Program.cs

示例13: Run

        public void Run(ComputeContext context, TextWriter log)
        {
            try
            {
                // Create the arrays and fill them with random data.
                int count = 10;
                float[] arrA = new float[count];
                float[] arrB = new float[count];
                float[] arrC = new float[count];

                Random rand = new Random();
                for (int i = 0; i < count; i++)
                {
                    arrA[i] = (float)(rand.NextDouble() * 100);
                    arrB[i] = (float)(rand.NextDouble() * 100);
                }

                // Create the input buffers and fill them with data from the arrays.
                // Access modifiers should match those in a kernel.
                // CopyHostPointer means the buffer should be filled with the data provided in the last argument.
                ComputeBuffer<float> a = new ComputeBuffer<float>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, arrA);
                ComputeBuffer<float> b = new ComputeBuffer<float>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, arrB);
                
                // The output buffer doesn't need any data from the host. Only its size is specified (arrC.Length).
                ComputeBuffer<float> c = new ComputeBuffer<float>(context, ComputeMemoryFlags.WriteOnly, arrC.Length);

                // Create and build the opencl program.
                program = new ComputeProgram(context, clProgramSource);
                program.Build(null, null, null, IntPtr.Zero);

                // Create the kernel function and set its arguments.
                ComputeKernel kernel = program.CreateKernel("VectorAdd");
                kernel.SetMemoryArgument(0, a);
                kernel.SetMemoryArgument(1, b);
                kernel.SetMemoryArgument(2, c);

                // Create the event wait list. An event list is not really needed for this example but it is important to see how it works.
                // Note that events (like everything else) consume OpenCL resources and creating a lot of them may slow down execution.
                // For this reason their use should be avoided if possible.
                ComputeEventList eventList = new ComputeEventList();
                
                // Create the command queue. This is used to control kernel execution and manage read/write/copy operations.
                ComputeCommandQueue commands = new ComputeCommandQueue(context, context.Devices[0], ComputeCommandQueueFlags.None);

                // Execute the kernel "count" times. After this call returns, "eventList" will contain an event associated with this command.
                // If eventList == null or typeof(eventList) == ReadOnlyCollection<ComputeEventBase>, a new event will not be created.
                commands.Execute(kernel, null, new long[] { count }, null, eventList);
                
                // Read back the results. If the command-queue has out-of-order execution enabled (default is off), ReadFromBuffer 
                // will not execute until any previous events in eventList (in our case only eventList[0]) are marked as complete 
                // by OpenCL. By default the command-queue will execute the commands in the same order as they are issued from the host.
                // eventList will contain two events after this method returns.
                commands.ReadFromBuffer(c, ref arrC, false, eventList);

                // A blocking "ReadFromBuffer" (if 3rd argument is true) will wait for itself and any previous commands
                // in the command queue or eventList to finish execution. Otherwise an explicit wait for all the opencl commands 
                // to finish has to be issued before "arrC" can be used. 
                // This explicit synchronization can be achieved in two ways:

                // 1) Wait for the events in the list to finish,
                //eventList.Wait();

                // 2) Or simply use
                commands.Finish();

                // Print the results to a log/console.
                for (int i = 0; i < count; i++)
                    log.WriteLine("{0} + {1} = {2}", arrA[i], arrB[i], arrC[i]);

                // cleanup commands
                commands.Dispose();

                // cleanup events
                foreach (ComputeEventBase eventBase in eventList)
                {
                    eventBase.Dispose();
                }
                eventList.Clear();

                // cleanup kernel
                kernel.Dispose();

                // cleanup program
                program.Dispose();

                // cleanup buffers
                a.Dispose();
                b.Dispose();
                c.Dispose();
            }
            catch (Exception e)
            {
                log.WriteLine(e.ToString());
            }
        }
开发者ID:RokkiGH,项目名称:cloo-unity,代码行数:95,代码来源:VectorAddExample.cs

示例14: SearchPassword

		public String SearchPassword (byte[] hash, HashType type, int maxLength, String[] keySpace)
		{
			if (type != HashType.MD5) {
				throw new NotImplementedException ("sums other than MD5 not supported");
			}

			if (maxLength > 6) {
				throw new NotImplementedException ("doesn't support longer passwords than 7");
			}

			var joinedKeySpace = new List<byte> ();

			foreach (var k in keySpace) {
				if (k.Length > 1) {
					throw new NotImplementedException ("doesn't support longer keyspaces than 1");
				}

				joinedKeySpace.AddRange (Encoding.ASCII.GetBytes (k));
			}
				
			byte[] resultData = new byte[20];
			byte[] keyspaceJoined = joinedKeySpace.ToArray ();

			var resultBuffer = new ComputeBuffer<byte> (Context, ComputeMemoryFlags.WriteOnly | ComputeMemoryFlags.CopyHostPointer, resultData);
			var hashBuffer = new ComputeBuffer<byte> (Context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, hash);
			var keyspaceBuffer = new ComputeBuffer<byte> (Context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, keyspaceJoined);
			var passLenBuffer = new ComputeBuffer<byte> (Context, ComputeMemoryFlags.WriteOnly, 1);
			var flagBuffer = new ComputeBuffer<int> (Context, ComputeMemoryFlags.None, 1);


			Kernel.SetMemoryArgument (0, hashBuffer);
			Kernel.SetMemoryArgument (1, keyspaceBuffer);
			Kernel.SetMemoryArgument (2, resultBuffer);
			Kernel.SetMemoryArgument (3, passLenBuffer);
			Kernel.SetMemoryArgument (4, flagBuffer);

			// execute kernel
			var queue = new ComputeCommandQueue (Context, Device, ComputeCommandQueueFlags.None);

			long firstDim = joinedKeySpace.Count;
			var globalWorksize = new long[] { firstDim, 57 * 57, 57 * 57 };

			queue.Execute (Kernel, new long[] { 0, 0, 0 }, globalWorksize, null, null);

			byte[] passLen = new byte[1];

			queue.ReadFromBuffer (resultBuffer, ref resultData, true, null);
			queue.ReadFromBuffer (passLenBuffer, ref passLen, true, null);

			String password = null;

			if (passLen [0] > 0) {
				logger.Info ("pass len {0}", passLen [0]);
				password = Encoding.ASCII.GetString (resultData, 0, passLen [0]);
				logger.Info ("Found password: \"{0}\"", password);
			} else {
				logger.Info ("Password not found.");
			}

			queue.Finish ();

			return password;
		}
开发者ID:frachstudia,项目名称:studies,代码行数:63,代码来源:OpenCLPasswordMatcher.cs

示例15: Run

        public static void Run(TextWriter log, ComputeContext context)
        {
            StartTest(log, "Vector addition test");

            try
            {
                int count = 10;
                float[] arrA = new float[count];
                float[] arrB = new float[count];
                float[] arrC = new float[count];

                Random rand = new Random();

                for (int i = 0; i < count; i++)
                {
                    arrA[i] = (float)(rand.NextDouble() * 100);
                    arrB[i] = (float)(rand.NextDouble() * 100);
                }

                ComputeBuffer<float> a = new ComputeBuffer<float>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, arrA);
                ComputeBuffer<float> b = new ComputeBuffer<float>(context, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, arrB);
                ComputeBuffer<float> c = new ComputeBuffer<float>(context, ComputeMemoryFlags.WriteOnly, arrC.Length);

                ComputeProgram program = new ComputeProgram(context, kernelSource);
                program.Build(null, null, null, IntPtr.Zero);
                ComputeKernel kernel = program.CreateKernel("VectorAdd");
                kernel.SetMemoryArgument(0, a);
                kernel.SetMemoryArgument(1, b);
                kernel.SetMemoryArgument(2, c);

                ComputeCommandQueue commands = new ComputeCommandQueue(context, context.Devices[0], ComputeCommandQueueFlags.None);

                ICollection<ComputeEventBase> events = new Collection<ComputeEventBase>();

                // BUG: ATI Stream v2.2 crash if event list not null.
                commands.Execute(kernel, null, new long[] { count }, null, events);
                //commands.Execute(kernel, null, new long[] { count }, null, null);

                arrC = new float[count];
                GCHandle arrCHandle = GCHandle.Alloc(arrC, GCHandleType.Pinned);

                commands.Read(c, true, 0, count, arrCHandle.AddrOfPinnedObject(), events);

                arrCHandle.Free();

                for (int i = 0; i < count; i++)
                    log.WriteLine("{0} + {1} = {2}", arrA[i], arrB[i], arrC[i]);
            }
            catch (Exception e)
            {
                log.WriteLine(e.ToString());
            }

            EndTest(log, "Vector addition test");
        }
开发者ID:kwaegel,项目名称:Cloox2,代码行数:55,代码来源:VectorAddTest.cs


注:本文中的ComputeCommandQueue.Execute方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。