本文整理汇总了C#中Circuit.stampMatrix方法的典型用法代码示例。如果您正苦于以下问题:C# Circuit.stampMatrix方法的具体用法?C# Circuit.stampMatrix怎么用?C# Circuit.stampMatrix使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Circuit
的用法示例。
在下文中一共展示了Circuit.stampMatrix方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: step
public override void step(Circuit sim)
{
bool v1 = lead_volt[0] > 2.5;
bool v2 = lead_volt[1] > 2.5;
if(v1 && !pins[0].value)
ff1 = true;
if(v2 && !pins[1].value)
ff2 = true;
if(ff1 && ff2)
ff1 = ff2 = false;
double @out = (ff1) ? 5 : (ff2) ? 0 : -1;
// System.out.println(out + " " + v1 + " " + v2);
if(@out != -1) {
sim.stampVoltageSource(0, lead_node[2], pins[2].voltSource, @out);
} else {
// tie current through output pin to 0
int vn = sim.nodeCount + pins[2].voltSource;
sim.stampMatrix(vn, vn, 1);
}
pins[0].value = v1;
pins[1].value = v2;
}
示例2: step
public override void step(Circuit sim)
{
double vc = lead_volt[3] - lead_volt[2];
double vo = lead_volt[1];
int dir = (vo < 2.5) ? 1 : -1;
// switch direction of current through cap as we oscillate
if (vo < 2.5 && vc > 4.5) {
vo = 5;
dir = -1;
}
if (vo > 2.5 && vc < .5) {
vo = 0;
dir = 1;
}
// generate output voltage
sim.updateVoltageSource(0, lead_node[1], pins[1].voltSource, vo);
// now we set the current through the cap to be equal to the
// current through R1 and R2, so we can measure the voltage
// across the cap
int cur1 = sim.nodeCount + pins[4].voltSource;
int cur2 = sim.nodeCount + pins[5].voltSource;
sim.stampMatrix(lead_node[2], cur1, dir);
sim.stampMatrix(lead_node[2], cur2, dir);
sim.stampMatrix(lead_node[3], cur1, -dir);
sim.stampMatrix(lead_node[3], cur2, -dir);
cDir = dir;
}
示例3: step
public override void step(Circuit sim)
{
double[] vs = new double[3];
vs[0] = lead_volt[0];
vs[1] = lead_volt[1];
vs[2] = lead_volt[2];
if(vs[1] > lastv1 + .5) vs[1] = lastv1 + .5;
if(vs[1] < lastv1 - .5) vs[1] = lastv1 - .5;
if(vs[2] > lastv2 + .5) vs[2] = lastv2 + .5;
if(vs[2] < lastv2 - .5) vs[2] = lastv2 - .5;
int source = 1;
int drain = 2;
if((pnp ? -1 : 1) * vs[1] > (pnp ? -1 : 1) * vs[2]) {
source = 2;
drain = 1;
}
int gate = 0;
double vgs = vs[gate] - vs[source];
double vds = vs[drain] - vs[source];
if(Math.Abs(lastv1 - vs[1]) > .01 || Math.Abs(lastv2 - vs[2]) > .01)
sim.converged = false;
lastv1 = vs[1];
lastv2 = vs[2];
double realvgs = vgs;
double realvds = vds;
vgs *= (pnp ? -1 : 1);
vds *= (pnp ? -1 : 1);
ids = 0;
gm = 0;
double Gds = 0;
double beta = getBeta();
if(vgs > .5 && this is JfetElm) {
sim.panic("JFET is reverse biased!", this);
return;
}
if(vgs < _threshold) {
// should be all zero, but that causes a singular matrix,
// so instead we treat it as a large resistor
Gds = 1e-8;
ids = vds * Gds;
mode = 0;
} else if(vds < vgs - _threshold) {
// linear
ids = beta * ((vgs - _threshold) * vds - vds * vds * .5);
gm = beta * vds;
Gds = beta * (vgs - vds - _threshold);
mode = 1;
} else {
// saturation; Gds = 0
gm = beta * (vgs - _threshold);
// use very small Gds to avoid nonconvergence
Gds = 1e-8;
ids = 0.5 * beta * (vgs - _threshold) * (vgs - _threshold) + (vds - (vgs - _threshold)) * Gds;
mode = 2;
}
double rs = -(pnp ? -1 : 1) * ids + Gds * realvds + gm * realvgs;
sim.stampMatrix(lead_node[drain], lead_node[drain], Gds);
sim.stampMatrix(lead_node[drain], lead_node[source], -Gds - gm);
sim.stampMatrix(lead_node[drain], lead_node[gate], gm);
sim.stampMatrix(lead_node[source], lead_node[drain], -Gds);
sim.stampMatrix(lead_node[source], lead_node[source], Gds + gm);
sim.stampMatrix(lead_node[source], lead_node[gate], -gm);
sim.stampRightSide(lead_node[drain], rs);
sim.stampRightSide(lead_node[source], -rs);
if(source == 2 && (pnp ? -1 : 1) == 1 || source == 1 && (pnp ? -1 : 1) == -1)
ids = -ids;
}
示例4: return
/*public override double getPower() {
return (lead_volt[0] - lead_volt[2]) * current;
}*/
public override void step(Circuit sim)
{
double[] vs = new double[3];
vs[0] = lead_volt[0];
vs[1] = lead_volt[1];
vs[2] = lead_volt[2];
if(vs[1] > lastv1 + 0.5) vs[1] = lastv1 + 0.5;
if(vs[1] < lastv1 - 0.5) vs[1] = lastv1 - 0.5;
if(vs[2] > lastv2 + 0.5) vs[2] = lastv2 + 0.5;
if(vs[2] < lastv2 - 0.5) vs[2] = lastv2 - 0.5;
int grid = 1;
int cath = 2;
int plate = 0;
double vgk = vs[grid] - vs[cath];
double vpk = vs[plate] - vs[cath];
if(Math.Abs(lastv0 - vs[0]) > 0.01 || Math.Abs(lastv1 - vs[1]) > 0.01 || Math.Abs(lastv2 - vs[2]) > 0.01)
sim.converged = false;
lastv0 = vs[0];
lastv1 = vs[1];
lastv2 = vs[2];
double ids = 0;
double gm = 0;
double Gds = 0;
double ival = vgk + vpk / mu;
currentg = 0;
if(vgk > .01) {
sim.stampResistor(lead_node[grid], lead_node[cath], gridCurrentR);
currentg = vgk / gridCurrentR;
}
if(ival < 0) {
// should be all zero, but that causes a singular matrix,
// so instead we treat it as a large resistor
Gds = 1E-8;
ids = vpk * Gds;
} else {
ids = Math.Pow(ival, 1.5) / kg1;
double q = 1.5 * Math.Sqrt(ival) / kg1;
// gm = dids/dgk;
// Gds = dids/dpk;
Gds = q;
gm = q / mu;
}
currentp = ids;
currentc = ids + currentg;
double rs = -ids + Gds * vpk + gm * vgk;
sim.stampMatrix(lead_node[plate], lead_node[plate], Gds);
sim.stampMatrix(lead_node[plate], lead_node[cath], -Gds - gm);
sim.stampMatrix(lead_node[plate], lead_node[grid], gm);
sim.stampMatrix(lead_node[cath], lead_node[plate], -Gds);
sim.stampMatrix(lead_node[cath], lead_node[cath], Gds + gm);
sim.stampMatrix(lead_node[cath], lead_node[grid], -gm);
sim.stampRightSide(lead_node[plate], rs);
sim.stampRightSide(lead_node[cath], -rs);
}
示例5: step
public override void step(Circuit sim)
{
double vd = lead_volt[1] - lead_volt[0];
if(Math.Abs(lastvd - vd) > 0.1) {
sim.converged = false;
} else if(lead_volt[2] > maxOut + 0.1 || lead_volt[2] < minOut - 0.1) {
sim.converged = false;
}
double x = 0;
int vn = sim.nodeCount + voltSource;
double dx = 0;
if(vd >= maxOut / gain && (lastvd >= 0 || getRand(4) == 1)) {
dx = 1E-4;
x = maxOut - dx * maxOut / gain;
} else if(vd <= minOut / gain && (lastvd <= 0 || getRand(4) == 1)) {
dx = 1E-4;
x = minOut - dx * minOut / gain;
} else {
dx = gain;
}
// newton-raphson
sim.stampMatrix(vn, lead_node[0], dx);
sim.stampMatrix(vn, lead_node[1], -dx);
sim.stampMatrix(vn, lead_node[2], 1);
sim.stampRightSide(vn, x);
lastvd = vd;
}
示例6: getVoltageText
/*public override void getInfo(String[] arr) {
arr[0] = "op-amp";
arr[1] = "V+ = " + getVoltageText(lead_volt[1]);
arr[2] = "V- = " + getVoltageText(lead_volt[0]);
// sometimes the voltage goes slightly outside range, to make
// convergence easier. so we hide that here.
double vo = Math.Max(Math.Min(lead_volt[2], maxOut), minOut);
arr[3] = "Vout = " + getVoltageText(vo);
arr[4] = "Iout = " + getCurrentText(current);
arr[5] = "range = " + getVoltageText(minOut) + " to " + getVoltageText(maxOut);
}*/
public override void stamp(Circuit sim)
{
int vn = sim.nodeCount + voltSource;
sim.stampNonLinear(vn);
sim.stampMatrix(lead_node[2], vn, 1);
}
示例7: step
public override void step(Circuit sim)
{
double vbc = lead_volt[0] - lead_volt[1]; // typically negative
double vbe = lead_volt[0] - lead_volt[2]; // typically positive
if(Math.Abs(vbc - lastvbc) > 0.01 || Math.Abs(vbe - lastvbe) > 0.01)
sim.converged = false;
gmin = 0;
if(sim.subIterations > 100) {
// if we have trouble converging, put a conductance in parallel with
// all P-N junctions. Gradually increase the conductance value for each iteration.
gmin = Math.Exp(-9 * Math.Log(10) * (1 - sim.subIterations / 3000.0));
if(gmin > .1) gmin = .1;
}
vbc = pnp * limitStep(sim, pnp * vbc, pnp * lastvbc);
vbe = pnp * limitStep(sim, pnp * vbe, pnp * lastvbe);
lastvbc = vbc;
lastvbe = vbe;
double pcoef = vdcoef * pnp;
double expbc = Math.Exp(vbc * pcoef);
double expbe = Math.Exp(vbe * pcoef);
if(expbe < 1) expbe = 1;
ie = pnp * leakage * (-(expbe - 1) + rgain * (expbc - 1));
ic = pnp * leakage * (fgain * (expbe - 1) - (expbc - 1));
ib = -(ie + ic);
double gee = -leakage * vdcoef * expbe;
double gec = rgain * leakage * vdcoef * expbc;
double gce = -gee * fgain;
double gcc = -gec * (1 / rgain);
// stamps from page 302 of Pillage. Node 0 is the base,
// node 1 the collector, node 2 the emitter. Also stamp
// minimum conductance (gmin) between b,e and b,c
sim.stampMatrix(lead_node[0], lead_node[0], -gee - gec - gce - gcc + gmin * 2);
sim.stampMatrix(lead_node[0], lead_node[1], gec + gcc - gmin);
sim.stampMatrix(lead_node[0], lead_node[2], gee + gce - gmin);
sim.stampMatrix(lead_node[1], lead_node[0], gce + gcc - gmin);
sim.stampMatrix(lead_node[1], lead_node[1], -gcc + gmin);
sim.stampMatrix(lead_node[1], lead_node[2], -gce);
sim.stampMatrix(lead_node[2], lead_node[0], gee + gec - gmin);
sim.stampMatrix(lead_node[2], lead_node[1], -gec);
sim.stampMatrix(lead_node[2], lead_node[2], -gee + gmin);
// we are solving for v(k+1), not delta v, so we use formula
// 10.5.13, multiplying J by v(k)
sim.stampRightSide(lead_node[0], -ib - (gec + gcc) * vbc - (gee + gce) * vbe);
sim.stampRightSide(lead_node[1], -ic + gce * vbe + gcc * vbc);
sim.stampRightSide(lead_node[2], -ie + gee * vbe + gec * vbc);
}