当前位置: 首页>>代码示例>>C#>>正文


C# Circuit.stampConductance方法代码示例

本文整理汇总了C#中Circuit.stampConductance方法的典型用法代码示例。如果您正苦于以下问题:C# Circuit.stampConductance方法的具体用法?C# Circuit.stampConductance怎么用?C# Circuit.stampConductance使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Circuit的用法示例。


在下文中一共展示了Circuit.stampConductance方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: doStep

        public void doStep(Circuit sim, double voltdiff)
        {
            // used to have .1 here, but needed .01 for peak detector
            if(Math.Abs(voltdiff - lastvoltdiff) > 0.01)
                sim.converged = false;

            voltdiff = limitStep(sim, voltdiff, lastvoltdiff);
            lastvoltdiff = voltdiff;

            if(voltdiff >= 0 || zvoltage == 0) {
                // regular diode or forward-biased zener
                double eval = Math.Exp(voltdiff * vdcoef);
                // make diode linear with negative voltages; aids convergence
                if(voltdiff < 0)
                    eval = 1;

                double geq = vdcoef * leakage * eval;
                double nc = (eval - 1) * leakage - geq * voltdiff;
                sim.stampConductance(nodes[0], nodes[1], geq);
                sim.stampCurrentSource(nodes[0], nodes[1], nc);
            } else {
                // Zener diode
                // I(Vd) = Is * (exp[Vd*C] - exp[(-Vd-Vz)*C] - 1 )
                // geq is I'(Vd) nc is I(Vd) + I'(Vd)*(-Vd)
                double geq = leakage * vdcoef * (Math.Exp(voltdiff * vdcoef) + Math.Exp((-voltdiff - zoffset) * vdcoef));
                double nc = leakage * (Math.Exp(voltdiff * vdcoef) - Math.Exp((-voltdiff - zoffset) * vdcoef) - 1) + geq * (-voltdiff);
                sim.stampConductance(nodes[0], nodes[1], geq);
                sim.stampCurrentSource(nodes[0], nodes[1], nc);
            }
        }
开发者ID:DotNetSparky,项目名称:SharpCircuit,代码行数:30,代码来源:Diode.cs

示例2: step

 public override void step(Circuit sim)
 {
     double voltdiff = lead_volt[0] - lead_volt[1];
     if(Math.Abs(voltdiff - lastvoltdiff) > 0.01)
         sim.converged = false;
     voltdiff = limitStep(voltdiff, lastvoltdiff);
     lastvoltdiff = voltdiff;
     double i = pip * Math.Exp(-pvpp / pvt) * (Math.Exp(voltdiff / pvt) - 1)
             + pip * (voltdiff / pvp) * Math.Exp(1 - voltdiff / pvp) + piv
             * Math.Exp(voltdiff - pvv);
     double geq = pip * Math.Exp(-pvpp / pvt) * Math.Exp(voltdiff / pvt)
             / pvt + pip * Math.Exp(1 - voltdiff / pvp) / pvp
             - Math.Exp(1 - voltdiff / pvp) * pip * voltdiff / (pvp * pvp)
             + Math.Exp(voltdiff - pvv) * piv;
     double nc = i - geq * voltdiff;
     sim.stampConductance(lead_node[0], lead_node[1], geq);
     sim.stampCurrentSource(lead_node[0], lead_node[1], nc);
 }
开发者ID:DotNetSparky,项目名称:SharpCircuit,代码行数:18,代码来源:TunnelDiode.cs

示例3: stamp

        public override void stamp(Circuit sim)
        {
            // equations for transformer:
            // v1 = L1 di1/dt + M1 di2/dt + M1 di3/dt
            // v2 = M1 di1/dt + L2 di2/dt + M2 di3/dt
            // v3 = M1 di1/dt + M2 di2/dt + L2 di3/dt
            // we invert that to get:
            // di1/dt = a1 v1 + a2 v2 + a3 v3
            // di2/dt = a4 v1 + a5 v2 + a6 v3
            // di3/dt = a7 v1 + a8 v2 + a9 v3
            // integrate di1/dt using trapezoidal approx and we get:
            // i1(t2) = i1(t1) + dt/2 (i1(t1) + i1(t2))
            // = i1(t1) + a1 dt/2 v1(t1)+a2 dt/2 v2(t1)+a3 dt/2 v3(t3) +
            // a1 dt/2 v1(t2)+a2 dt/2 v2(t2)+a3 dt/2 v3(t3)
            // the norton equivalent of this for i1 is:
            // a. current source, I = i1(t1) + a1 dt/2 v1(t1) + a2 dt/2 v2(t1)
            // + a3 dt/2 v3(t1)
            // b. resistor, G = a1 dt/2
            // c. current source controlled by voltage v2, G = a2 dt/2
            // d. current source controlled by voltage v3, G = a3 dt/2
            // and similarly for i2
            //
            // first winding goes from node 0 to 1, second is from 2 to 3 to 4
            double l1 = inductance;
            double cc = .99;
            // double m1 = .999*Math.sqrt(l1*l2);
            // mutual inductance between two halves of the second winding
            // is equal to self-inductance of either half (slightly less
            // because the coupling is not perfect)
            // double m2 = .999*l2;
            // load pre-inverted matrix
            a[0] = (1 + cc) / (l1 * (1 + cc - 2 * cc * cc));
            a[1] = a[2] = a[3] = a[6] = 2 * cc / ((2 * cc * cc - cc - 1) * inductance * ratio);
            a[4] = a[8] = -4 * (1 + cc) / ((2 * cc * cc - cc - 1) * l1 * ratio * ratio);
            a[5] = a[7] = 4 * cc / ((2 * cc * cc - cc - 1) * l1 * ratio * ratio);
            int i;
            for(i = 0; i != 9; i++)
                a[i] *= sim.timeStep / 2;

            sim.stampConductance(lead_node[0], lead_node[1], a[0]);
            sim.stampVCCS(lead_node[0], lead_node[1], lead_node[2], lead_node[3], a[1]);
            sim.stampVCCS(lead_node[0], lead_node[1], lead_node[3], lead_node[4], a[2]);

            sim.stampVCCS(lead_node[2], lead_node[3], lead_node[0], lead_node[1], a[3]);
            sim.stampConductance(lead_node[2], lead_node[3], a[4]);
            sim.stampVCCS(lead_node[2], lead_node[3], lead_node[3], lead_node[4], a[5]);

            sim.stampVCCS(lead_node[3], lead_node[4], lead_node[0], lead_node[1], a[6]);
            sim.stampVCCS(lead_node[3], lead_node[4], lead_node[2], lead_node[3], a[7]);
            sim.stampConductance(lead_node[3], lead_node[4], a[8]);

            for(i = 0; i != 5; i++)
                sim.stampRightSide(lead_node[i]);
        }
开发者ID:DotNetSparky,项目名称:SharpCircuit,代码行数:54,代码来源:TappedTransformer.cs

示例4: stamp

 public override void stamp(Circuit sim)
 {
     // equations for transformer:
     // v1 = L1 di1/dt + M di2/dt
     // v2 = M di1/dt + L2 di2/dt
     // we invert that to get:
     // di1/dt = a1 v1 + a2 v2
     // di2/dt = a3 v1 + a4 v2
     // integrate di1/dt using trapezoidal approx and we get:
     // i1(t2) = i1(t1) + dt/2 (i1(t1) + i1(t2))
     // = i1(t1) + a1 dt/2 v1(t1) + a2 dt/2 v2(t1) +
     // a1 dt/2 v1(t2) + a2 dt/2 v2(t2)
     // the norton equivalent of this for i1 is:
     // a. current source, I = i1(t1) + a1 dt/2 v1(t1) + a2 dt/2 v2(t1)
     // b. resistor, G = a1 dt/2
     // c. current source controlled by voltage v2, G = a2 dt/2
     // and for i2:
     // a. current source, I = i2(t1) + a3 dt/2 v1(t1) + a4 dt/2 v2(t1)
     // b. resistor, G = a3 dt/2
     // c. current source controlled by voltage v2, G = a4 dt/2
     //
     // For backward euler,
     //
     // i1(t2) = i1(t1) + a1 dt v1(t2) + a2 dt v2(t2)
     //
     // So the current source value is just i1(t1) and we use
     // dt instead of dt/2 for the resistor and VCCS.
     //
     // first winding goes from node 0 to 2, second is from 1 to 3
     double l1 = inductance;
     double l2 = inductance * ratio * ratio;
     double m = couplingCoef * Math.Sqrt(l1 * l2);
     // build inverted matrix
     double deti = 1 / (l1 * l2 - m * m);
     double ts = isTrapezoidal ? sim.timeStep / 2 : sim.timeStep;
     a1 = l2 * deti * ts; // we multiply dt/2 into a1..a4 here
     a2 = -m * deti * ts;
     a3 = -m * deti * ts;
     a4 = l1 * deti * ts;
     sim.stampConductance(lead_node[0], lead_node[2], a1);
     sim.stampVCCS(lead_node[0], lead_node[2], lead_node[1], lead_node[3], a2);
     sim.stampVCCS(lead_node[1], lead_node[3], lead_node[0], lead_node[2], a3);
     sim.stampConductance(lead_node[1], lead_node[3], a4);
     sim.stampRightSide(lead_node[0]);
     sim.stampRightSide(lead_node[1]);
     sim.stampRightSide(lead_node[2]);
     sim.stampRightSide(lead_node[3]);
 }
开发者ID:DotNetSparky,项目名称:SharpCircuit,代码行数:48,代码来源:Transformer.cs


注:本文中的Circuit.stampConductance方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。