本文整理汇总了C++中tmv::MatrixView::setZero方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixView::setZero方法的具体用法?C++ MatrixView::setZero怎么用?C++ MatrixView::setZero使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tmv::MatrixView
的用法示例。
在下文中一共展示了MatrixView::setZero方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: assert
void SBTopHat::SBTopHatImpl::fillXValue(tmv::MatrixView<double> val,
double x0, double dx, double dxy,
double y0, double dy, double dyx) const
{
dbg<<"SBTopHat fillXValue\n";
dbg<<"x = "<<x0<<" + i * "<<dx<<" + j * "<<dxy<<std::endl;
dbg<<"y = "<<y0<<" + i * "<<dyx<<" + j * "<<dy<<std::endl;
assert(val.stepi() == 1);
assert(val.canLinearize());
const int m = val.colsize();
const int n = val.rowsize();
typedef tmv::VIt<double,1,tmv::NonConj> It;
val.setZero();
It valit = val.linearView().begin();
for (int j=0;j<n;++j,x0+=dxy,y0+=dy) {
double x = x0;
double y = y0;
int i=0;
// Use the fact that any slice through the circle has only one segment that is non-zero.
// So start with zeroes until in the circle, then _norm, then more zeroes.
// Note: this could be sped up somewhat using the same kind of calculation we did
// for the non-sheared fillXValue (the one with izero, jzero), but I didn't
// bother. This is probably plenty fast enough for as often as the function is
// called (i.e. almost never!)
for (;i<m && (x*x+y*y > _r0sq); ++i,x+=dx,y+=dyx) ++valit;
for (;i<m && (x*x+y*y < _r0sq); ++i,x+=dx,y+=dyx) *valit++ = _norm;
for (;i<m; ++i,x+=dx,y+=dyx) ++valit;
}
}
示例2: if
void SBBox::SBBoxImpl::fillXValue(tmv::MatrixView<double> val,
double x0, double dx, int izero,
double y0, double dy, int jzero) const
{
dbg<<"SBBox fillXValue\n";
dbg<<"x = "<<x0<<" + i * "<<dx<<", izero = "<<izero<<std::endl;
dbg<<"y = "<<y0<<" + j * "<<dy<<", jzero = "<<jzero<<std::endl;
assert(val.stepi() == 1);
const int m = val.colsize();
const int n = val.rowsize();
typedef tmv::VIt<double,1,tmv::NonConj> It;
// It will be useful to do everything in units of dx,dy
x0 /= dx;
double wo2 = _wo2 / std::abs(dx);
y0 /= dy;
double ho2 = _ho2 / std::abs(dy);
xdbg<<"x0,y0 -> "<<x0<<','<<y0<<std::endl;
xdbg<<"width,height -> "<<wo2*2.<<','<<ho2*2.<<std::endl;
// Start by setting everything to zero
val.setZero();
// Then fill the interior with _norm:
// Fill pixels where:
// x0 + ix >= -width/2
// x0 + ix < width/2
// y0 + iy >= -width/2
// y0 + iy < width/2
int ix1 = std::max(0, int(std::ceil(-wo2 - x0)));
int ix2 = std::min(m, int(std::ceil(wo2 - x0)));
int iy1 = std::max(0, int(std::ceil(-ho2 - y0)));
int iy2 = std::min(n, int(std::ceil(ho2 - y0)));
if (ix1 < ix2 && iy1 < iy2)
val.subMatrix(ix1,ix2,iy1,iy2).setAllTo(_norm);
#if 0
// We used to implement this by making the pixels that cross the edge have a
// fractional flux value appropriate for the fraction of the box that goes through
// each pixel. However, this isn't actually correct. SBProfile objects are always
// rendered as the local surface brightness at the center of the pixel. To get
// the right flux, you need to convolve by a Pixel. So if someone renders a Box
// without convolving by a pixel, it is inconsistent to do this differently than we
// do all the other SBProfile types. However, since it was an involved calculation
// and someone might actually care to resurrect it in a different guise at some point,
// I'm leaving it here, just commented out.
// We need to make sure the pixels where the edges of the box fall only get
// a fraction of the flux.
//
// We divide up the range into 3 sections in x:
// left of the box where val = 0
// in the box where val = _norm
// right of the box where val = 0 again
//
// ... and 3 sections in y:
// below the box where val = 0
// in the box where val = _norm
// above the box where val = 0 again
//
// Furthermore, we have to calculate the correct values for the pixels on the border.
int ix_left, ix_right, iy_bottom, iy_top;
double x_left, x_right, y_bottom, y_top;
// Find the x edges:
double tmp = 0.5*width + 0.5;
ix_left = int(-tmp-x0+1);
ix_right = int(tmp-x0);
// If the box goes off the image, it's ok, but it will cause us problems
// later on if we don't change it. Just use ix_left = 0.
if (ix_left < 0) { ix_left = 0; x_left = 1.; }
// If the whole box is off the image, just zero and return.
else if (ix_left >= m) { val.setZero(); return; }
// Normal case: calculate the fractional flux in the edge
else x_left = tmp+x0+ix_left;
// Now the right side.
if (ix_right >= m) { ix_right = m-1; x_right = 1.; }
else if (ix_right < 0) { val.setZero(); return; }
else x_right = tmp-x0-ix_right;
xdbg<<"ix_left = "<<ix_left<<" with partial flux "<<x_left<<std::endl;
xdbg<<"ix_right = "<<ix_right<<" with partial flux "<<x_right<<std::endl;
// Repeat for y values
tmp = 0.5*height + 0.5;
iy_bottom = int(-tmp-y0+1);
iy_top = int(tmp-y0);
if (iy_bottom < 0) { iy_bottom = 0; y_bottom = 1.; }
else if (iy_bottom >= n) { val.setZero(); return; }
else y_bottom = tmp+y0+iy_bottom;
if (iy_top >= n) { iy_top = n-1; y_top = 1.; }
//.........这里部分代码省略.........