本文整理汇总了C++中tmv::MatrixView::ncols方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixView::ncols方法的具体用法?C++ MatrixView::ncols怎么用?C++ MatrixView::ncols使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tmv::MatrixView
的用法示例。
在下文中一共展示了MatrixView::ncols方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: kBasis
void LVector::kBasis(
const tmv::ConstVectorView<double>& kx, const tmv::ConstVectorView<double>& ky,
tmv::MatrixView<std::complex<double> > psi_k, int order, double sigma)
{
assert(ky.size() == kx.size() && psi_k.nrows() == kx.size());
assert(psi_k.ncols()==PQIndex::size(order));
mBasis(kx, ky, 0, psi_k, order, sigma);
}
示例2: basis
void LVector::basis(
const tmv::ConstVectorView<double>& x, const tmv::ConstVectorView<double>& y,
tmv::MatrixView<double> psi, int order, double sigma)
{
assert(y.size() == x.size() && psi.nrows() == x.size());
assert(psi.ncols()==PQIndex::size(order));
mBasis(x, y, 0, psi, order, sigma);
}
示例3: mBasis
void LVector::mBasis(
const tmv::ConstVectorView<double>& x, const tmv::ConstVectorView<double>& y,
const tmv::ConstVectorView<double>* invsig,
tmv::MatrixView<T> psi, int order, double sigma)
{
assert (y.size()==x.size());
assert (psi.nrows()==x.size() && psi.ncols()==PQIndex::size(order));
const int N=order;
const int npts_full = x.size();
// It's faster to build the psi matrix in blocks so that more of the matrix stays in
// L1 cache. For a (typical) 256 KB L2 cache size, this corresponds to 8 columns in the
// cache, which is pretty good, since we are usually working on 4 columns at a time,
// plus either X and Y or 3 Lq vectors.
const int BLOCKING_FACTOR=4096;
const int max_npts = std::max(BLOCKING_FACTOR,npts_full);
tmv::DiagMatrix<double> Rsq_full(max_npts);
tmv::Matrix<double> A_full(max_npts,2);
tmv::Matrix<double> tmp_full(max_npts,2);
tmv::DiagMatrix<double> Lmq_full(max_npts);
tmv::DiagMatrix<double> Lmqm1_full(max_npts);
tmv::DiagMatrix<double> Lmqm2_full(max_npts);
for (int ilo=0; ilo<npts_full; ilo+=BLOCKING_FACTOR) {
const int ihi = std::min(npts_full, ilo + BLOCKING_FACTOR);
const int npts = ihi-ilo;
// Cast arguments as diagonal matrices so we can access
// vectorized element-by-element multiplication
tmv::ConstDiagMatrixView<double> X = DiagMatrixViewOf(x.subVector(ilo,ihi));
tmv::ConstDiagMatrixView<double> Y = DiagMatrixViewOf(y.subVector(ilo,ihi));
// Get the appropriate portion of our temporary matrices.
tmv::DiagMatrixView<double> Rsq = Rsq_full.subDiagMatrix(0,npts);
tmv::MatrixView<double> A = A_full.rowRange(0,npts);
tmv::MatrixView<double> tmp = tmp_full.rowRange(0,npts);
// We need rsq values twice, so store them here.
Rsq = X*X;
Rsq += Y*Y;
// This matrix will keep track of real & imag parts
// of prefactor * exp(-r^2/2) (x+iy)^m / sqrt(m!)
// Build the Gaussian factor
for (int i=0; i<npts; i++) A.ref(i,0) = std::exp(-0.5*Rsq(i));
mBasisHelper<T>::applyPrefactor(A.col(0),sigma);
A.col(1).setZero();
// Put 1/sigma factor into every point if doing a design matrix:
if (invsig) A.col(0) *= tmv::DiagMatrixViewOf(invsig->subVector(ilo,ihi));
// Assign the m=0 column first:
psi.col( PQIndex(0,0).rIndex(), ilo,ihi ) = A.col(0);
// Then ascend m's at q=0:
for (int m=1; m<=N; m++) {
int rIndex = PQIndex(m,0).rIndex();
// Multiply by (X+iY)/sqrt(m), including a factor 2 first time through
tmp = Y * A;
A = X * A;
A.col(0) += tmp.col(1);
A.col(1) -= tmp.col(0);
A *= m==1 ? 2. : 1./sqrtn(m);
psi.subMatrix(ilo,ihi,rIndex,rIndex+2) = mBasisHelper<T>::Asign(m%4) * A;
}
// Make three DiagMatrix to hold Lmq's during recurrence calculations
boost::shared_ptr<tmv::DiagMatrixView<double> > Lmq(
new tmv::DiagMatrixView<double>(Lmq_full.subDiagMatrix(0,npts)));
boost::shared_ptr<tmv::DiagMatrixView<double> > Lmqm1(
new tmv::DiagMatrixView<double>(Lmqm1_full.subDiagMatrix(0,npts)));
boost::shared_ptr<tmv::DiagMatrixView<double> > Lmqm2(
new tmv::DiagMatrixView<double>(Lmqm2_full.subDiagMatrix(0,npts)));
for (int m=0; m<=N; m++) {
PQIndex pq(m,0);
int iQ0 = pq.rIndex();
// Go to q=1:
pq.incN();
if (pq.pastOrder(N)) continue;
{ // q == 1
const int p = pq.getP();
const int q = pq.getQ();
const int iQ = pq.rIndex();
Lmqm1->setAllTo(1.); // This is Lm0.
*Lmq = Rsq - (p+q-1.);
*Lmq *= mBasisHelper<T>::Lsign(1.) / (sqrtn(p)*sqrtn(q));
if (m==0) {
psi.col(iQ,ilo,ihi) = (*Lmq) * psi.col(iQ0,ilo,ihi);
} else {
psi.subMatrix(ilo,ihi,iQ,iQ+2) = (*Lmq) * psi.subMatrix(ilo,ihi,iQ0,iQ0+2);
}
}
//.........这里部分代码省略.........