本文整理汇总了C++中tmv::MatrixView::col方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixView::col方法的具体用法?C++ MatrixView::col怎么用?C++ MatrixView::col使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tmv::MatrixView
的用法示例。
在下文中一共展示了MatrixView::col方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: fillXValueQuadrant
void SBKolmogorov::SBKolmogorovImpl::fillXValue(tmv::MatrixView<double> val,
double x0, double dx, int izero,
double y0, double dy, int jzero) const
{
dbg<<"SBKolmogorov fillXValue\n";
dbg<<"x = "<<x0<<" + i * "<<dx<<", izero = "<<izero<<std::endl;
dbg<<"y = "<<y0<<" + j * "<<dy<<", jzero = "<<jzero<<std::endl;
if (izero != 0 || jzero != 0) {
xdbg<<"Use Quadrant\n";
fillXValueQuadrant(val,x0,dx,izero,y0,dy,jzero);
} else {
xdbg<<"Non-Quadrant\n";
assert(val.stepi() == 1);
const int m = val.colsize();
const int n = val.rowsize();
typedef tmv::VIt<double,1,tmv::NonConj> It;
x0 *= _k0;
dx *= _k0;
y0 *= _k0;
dy *= _k0;
for (int j=0;j<n;++j,y0+=dy) {
double x = x0;
double ysq = y0*y0;
It valit = val.col(j).begin();
for (int i=0;i<m;++i,x+=dx) {
double r = sqrt(x*x + ysq);
*valit++ = _xnorm * _info->xValue(r);
}
}
}
}
示例2: fillKValueQuadrant
void SBKolmogorov::SBKolmogorovImpl::fillKValue(tmv::MatrixView<std::complex<double> > val,
double kx0, double dkx, int izero,
double ky0, double dky, int jzero) const
{
dbg<<"SBKolmogorov fillKValue\n";
dbg<<"kx = "<<kx0<<" + i * "<<dkx<<", izero = "<<izero<<std::endl;
dbg<<"ky = "<<ky0<<" + j * "<<dky<<", jzero = "<<jzero<<std::endl;
if (izero != 0 || jzero != 0) {
xdbg<<"Use Quadrant\n";
fillKValueQuadrant(val,kx0,dkx,izero,ky0,dky,jzero);
} else {
xdbg<<"Non-Quadrant\n";
assert(val.stepi() == 1);
const int m = val.colsize();
const int n = val.rowsize();
typedef tmv::VIt<std::complex<double>,1,tmv::NonConj> It;
kx0 *= _inv_k0;
dkx *= _inv_k0;
ky0 *= _inv_k0;
dky *= _inv_k0;
for (int j=0;j<n;++j,ky0+=dky) {
double kx = kx0;
double kysq = ky0*ky0;
It valit = val.col(j).begin();
for (int i=0;i<m;++i,kx+=dkx) *valit++ = _flux * _info->kValue(kx*kx + kysq);
}
}
}
示例3: assert
void SBTopHat::SBTopHatImpl::fillXValue(tmv::MatrixView<double> val,
double x0, double dx, int izero,
double y0, double dy, int jzero) const
{
dbg<<"SBTopHat fillXValue\n";
dbg<<"x = "<<x0<<" + i * "<<dx<<", izero = "<<izero<<std::endl;
dbg<<"y = "<<y0<<" + j * "<<dy<<", jzero = "<<jzero<<std::endl;
assert(val.stepi() == 1);
const int m = val.colsize();
const int n = val.rowsize();
typedef tmv::VIt<double,1,tmv::NonConj> It;
val.setZero();
// The columns to consider have -r0 <= y < r0
// given that y = y0 + j dy
double absdx = std::abs(dx);
double absdy = std::abs(dy);
int j1 = std::max(0, int(std::ceil(-_r0/absdy - y0/dy)));
int j2 = std::min(n, int(std::ceil(_r0/absdy - y0/dy)));
y0 += j1 * dy;
for (int j=j1;j<j2;++j,y0+=dy) {
double ysq = y0*y0;
double xmax = std::sqrt(_r0sq - ysq);
// Set to _norm all pixels with -xmax <= x < xmax
// given that x = x0 + i dx.
int i1 = std::max(0, int(std::ceil(-xmax/absdx - x0/dx)));
int i2 = std::min(m, int(std::ceil(xmax/absdx - x0/dx)));
if (i1 < i2)
val.col(j,i1,i2).setAllTo(_norm);
}
}
示例4: fillXValueQuadrant
void SBMoffat::SBMoffatImpl::fillXValue(tmv::MatrixView<double> val,
double x0, double dx, int izero,
double y0, double dy, int jzero) const
{
dbg<<"SBMoffat fillXValue\n";
dbg<<"x = "<<x0<<" + i * "<<dx<<", izero = "<<izero<<std::endl;
dbg<<"y = "<<y0<<" + j * "<<dy<<", jzero = "<<jzero<<std::endl;
if (izero != 0 || jzero != 0) {
xdbg<<"Use Quadrant\n";
fillXValueQuadrant(val,x0,dx,izero,y0,dy,jzero);
} else {
xdbg<<"Non-Quadrant\n";
assert(val.stepi() == 1);
const int m = val.colsize();
const int n = val.rowsize();
typedef tmv::VIt<double,1,tmv::NonConj> It;
x0 *= _inv_rD;
dx *= _inv_rD;
y0 *= _inv_rD;
dy *= _inv_rD;
for (int j=0;j<n;++j,y0+=dy) {
double x = x0;
double ysq = y0*y0;
It valit = val.col(j).begin();
for (int i=0;i<m;++i,x+=dx) {
double rsq = x*x + ysq;
if (rsq > _maxRrD_sq) *valit++ = 0.;
else *valit++ = _norm / _pow_beta(1.+rsq, _beta);
}
}
}
}
示例5: fillKValueQuadrant
void SBExponential::SBExponentialImpl::fillKValue(tmv::MatrixView<std::complex<double> > val,
double kx0, double dkx, int izero,
double ky0, double dky, int jzero) const
{
dbg<<"SBExponential fillKValue\n";
dbg<<"kx = "<<kx0<<" + i * "<<dkx<<", izero = "<<izero<<std::endl;
dbg<<"ky = "<<ky0<<" + j * "<<dky<<", jzero = "<<jzero<<std::endl;
if (izero != 0 || jzero != 0) {
xdbg<<"Use Quadrant\n";
fillKValueQuadrant(val,kx0,dkx,izero,ky0,dky,jzero);
} else {
xdbg<<"Non-Quadrant\n";
assert(val.stepi() == 1);
const int m = val.colsize();
const int n = val.rowsize();
typedef tmv::VIt<std::complex<double>,1,tmv::NonConj> It;
kx0 *= _r0;
dkx *= _r0;
ky0 *= _r0;
dky *= _r0;
for (int j=0;j<n;++j,ky0+=dky) {
double kx = kx0;
double kysq = ky0*ky0;
It valit = val.col(j).begin();
for (int i=0;i<m;++i,kx+=dkx) {
double ksq = kx*kx + kysq;
if (ksq > _ksq_max) {
*valit++ = 0.;
} else if (ksq < _ksq_min) {
*valit++ = _flux * (1. - 1.5*ksq*(1. - 1.25*ksq));
} else {
double temp = 1. + ksq;
*valit++ = _flux/(temp*sqrt(temp));
}
}
}
}
}
示例6: if
void SBBox::SBBoxImpl::fillXValue(tmv::MatrixView<double> val,
double x0, double dx, int izero,
double y0, double dy, int jzero) const
{
dbg<<"SBBox fillXValue\n";
dbg<<"x = "<<x0<<" + i * "<<dx<<", izero = "<<izero<<std::endl;
dbg<<"y = "<<y0<<" + j * "<<dy<<", jzero = "<<jzero<<std::endl;
assert(val.stepi() == 1);
const int m = val.colsize();
const int n = val.rowsize();
typedef tmv::VIt<double,1,tmv::NonConj> It;
// It will be useful to do everything in units of dx,dy
x0 /= dx;
double wo2 = _wo2 / std::abs(dx);
y0 /= dy;
double ho2 = _ho2 / std::abs(dy);
xdbg<<"x0,y0 -> "<<x0<<','<<y0<<std::endl;
xdbg<<"width,height -> "<<wo2*2.<<','<<ho2*2.<<std::endl;
// Start by setting everything to zero
val.setZero();
// Then fill the interior with _norm:
// Fill pixels where:
// x0 + ix >= -width/2
// x0 + ix < width/2
// y0 + iy >= -width/2
// y0 + iy < width/2
int ix1 = std::max(0, int(std::ceil(-wo2 - x0)));
int ix2 = std::min(m, int(std::ceil(wo2 - x0)));
int iy1 = std::max(0, int(std::ceil(-ho2 - y0)));
int iy2 = std::min(n, int(std::ceil(ho2 - y0)));
if (ix1 < ix2 && iy1 < iy2)
val.subMatrix(ix1,ix2,iy1,iy2).setAllTo(_norm);
#if 0
// We used to implement this by making the pixels that cross the edge have a
// fractional flux value appropriate for the fraction of the box that goes through
// each pixel. However, this isn't actually correct. SBProfile objects are always
// rendered as the local surface brightness at the center of the pixel. To get
// the right flux, you need to convolve by a Pixel. So if someone renders a Box
// without convolving by a pixel, it is inconsistent to do this differently than we
// do all the other SBProfile types. However, since it was an involved calculation
// and someone might actually care to resurrect it in a different guise at some point,
// I'm leaving it here, just commented out.
// We need to make sure the pixels where the edges of the box fall only get
// a fraction of the flux.
//
// We divide up the range into 3 sections in x:
// left of the box where val = 0
// in the box where val = _norm
// right of the box where val = 0 again
//
// ... and 3 sections in y:
// below the box where val = 0
// in the box where val = _norm
// above the box where val = 0 again
//
// Furthermore, we have to calculate the correct values for the pixels on the border.
int ix_left, ix_right, iy_bottom, iy_top;
double x_left, x_right, y_bottom, y_top;
// Find the x edges:
double tmp = 0.5*width + 0.5;
ix_left = int(-tmp-x0+1);
ix_right = int(tmp-x0);
// If the box goes off the image, it's ok, but it will cause us problems
// later on if we don't change it. Just use ix_left = 0.
if (ix_left < 0) { ix_left = 0; x_left = 1.; }
// If the whole box is off the image, just zero and return.
else if (ix_left >= m) { val.setZero(); return; }
// Normal case: calculate the fractional flux in the edge
else x_left = tmp+x0+ix_left;
// Now the right side.
if (ix_right >= m) { ix_right = m-1; x_right = 1.; }
else if (ix_right < 0) { val.setZero(); return; }
else x_right = tmp-x0-ix_right;
xdbg<<"ix_left = "<<ix_left<<" with partial flux "<<x_left<<std::endl;
xdbg<<"ix_right = "<<ix_right<<" with partial flux "<<x_right<<std::endl;
// Repeat for y values
tmp = 0.5*height + 0.5;
iy_bottom = int(-tmp-y0+1);
iy_top = int(tmp-y0);
if (iy_bottom < 0) { iy_bottom = 0; y_bottom = 1.; }
else if (iy_bottom >= n) { val.setZero(); return; }
else y_bottom = tmp+y0+iy_bottom;
if (iy_top >= n) { iy_top = n-1; y_top = 1.; }
//.........这里部分代码省略.........
示例7: mBasis
void LVector::mBasis(
const tmv::ConstVectorView<double>& x, const tmv::ConstVectorView<double>& y,
const tmv::ConstVectorView<double>* invsig,
tmv::MatrixView<T> psi, int order, double sigma)
{
assert (y.size()==x.size());
assert (psi.nrows()==x.size() && psi.ncols()==PQIndex::size(order));
const int N=order;
const int npts_full = x.size();
// It's faster to build the psi matrix in blocks so that more of the matrix stays in
// L1 cache. For a (typical) 256 KB L2 cache size, this corresponds to 8 columns in the
// cache, which is pretty good, since we are usually working on 4 columns at a time,
// plus either X and Y or 3 Lq vectors.
const int BLOCKING_FACTOR=4096;
const int max_npts = std::max(BLOCKING_FACTOR,npts_full);
tmv::DiagMatrix<double> Rsq_full(max_npts);
tmv::Matrix<double> A_full(max_npts,2);
tmv::Matrix<double> tmp_full(max_npts,2);
tmv::DiagMatrix<double> Lmq_full(max_npts);
tmv::DiagMatrix<double> Lmqm1_full(max_npts);
tmv::DiagMatrix<double> Lmqm2_full(max_npts);
for (int ilo=0; ilo<npts_full; ilo+=BLOCKING_FACTOR) {
const int ihi = std::min(npts_full, ilo + BLOCKING_FACTOR);
const int npts = ihi-ilo;
// Cast arguments as diagonal matrices so we can access
// vectorized element-by-element multiplication
tmv::ConstDiagMatrixView<double> X = DiagMatrixViewOf(x.subVector(ilo,ihi));
tmv::ConstDiagMatrixView<double> Y = DiagMatrixViewOf(y.subVector(ilo,ihi));
// Get the appropriate portion of our temporary matrices.
tmv::DiagMatrixView<double> Rsq = Rsq_full.subDiagMatrix(0,npts);
tmv::MatrixView<double> A = A_full.rowRange(0,npts);
tmv::MatrixView<double> tmp = tmp_full.rowRange(0,npts);
// We need rsq values twice, so store them here.
Rsq = X*X;
Rsq += Y*Y;
// This matrix will keep track of real & imag parts
// of prefactor * exp(-r^2/2) (x+iy)^m / sqrt(m!)
// Build the Gaussian factor
for (int i=0; i<npts; i++) A.ref(i,0) = std::exp(-0.5*Rsq(i));
mBasisHelper<T>::applyPrefactor(A.col(0),sigma);
A.col(1).setZero();
// Put 1/sigma factor into every point if doing a design matrix:
if (invsig) A.col(0) *= tmv::DiagMatrixViewOf(invsig->subVector(ilo,ihi));
// Assign the m=0 column first:
psi.col( PQIndex(0,0).rIndex(), ilo,ihi ) = A.col(0);
// Then ascend m's at q=0:
for (int m=1; m<=N; m++) {
int rIndex = PQIndex(m,0).rIndex();
// Multiply by (X+iY)/sqrt(m), including a factor 2 first time through
tmp = Y * A;
A = X * A;
A.col(0) += tmp.col(1);
A.col(1) -= tmp.col(0);
A *= m==1 ? 2. : 1./sqrtn(m);
psi.subMatrix(ilo,ihi,rIndex,rIndex+2) = mBasisHelper<T>::Asign(m%4) * A;
}
// Make three DiagMatrix to hold Lmq's during recurrence calculations
boost::shared_ptr<tmv::DiagMatrixView<double> > Lmq(
new tmv::DiagMatrixView<double>(Lmq_full.subDiagMatrix(0,npts)));
boost::shared_ptr<tmv::DiagMatrixView<double> > Lmqm1(
new tmv::DiagMatrixView<double>(Lmqm1_full.subDiagMatrix(0,npts)));
boost::shared_ptr<tmv::DiagMatrixView<double> > Lmqm2(
new tmv::DiagMatrixView<double>(Lmqm2_full.subDiagMatrix(0,npts)));
for (int m=0; m<=N; m++) {
PQIndex pq(m,0);
int iQ0 = pq.rIndex();
// Go to q=1:
pq.incN();
if (pq.pastOrder(N)) continue;
{ // q == 1
const int p = pq.getP();
const int q = pq.getQ();
const int iQ = pq.rIndex();
Lmqm1->setAllTo(1.); // This is Lm0.
*Lmq = Rsq - (p+q-1.);
*Lmq *= mBasisHelper<T>::Lsign(1.) / (sqrtn(p)*sqrtn(q));
if (m==0) {
psi.col(iQ,ilo,ihi) = (*Lmq) * psi.col(iQ0,ilo,ihi);
} else {
psi.subMatrix(ilo,ihi,iQ,iQ+2) = (*Lmq) * psi.subMatrix(ilo,ihi,iQ0,iQ0+2);
}
}
//.........这里部分代码省略.........