本文整理汇总了C++中optimizablegraph::Edge::linearizeOplus方法的典型用法代码示例。如果您正苦于以下问题:C++ Edge::linearizeOplus方法的具体用法?C++ Edge::linearizeOplus怎么用?C++ Edge::linearizeOplus使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类optimizablegraph::Edge
的用法示例。
在下文中一共展示了Edge::linearizeOplus方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: default
bool BlockSolver<Traits>::buildSystem()
{
// clear b vector
# ifdef G2O_OPENMP
# pragma omp parallel for default (shared) if (_optimizer->indexMapping().size() > 1000)
# endif
for (int i = 0; i < static_cast<int>(_optimizer->indexMapping().size()); ++i) {
OptimizableGraph::Vertex* v=_optimizer->indexMapping()[i];
assert(v);
v->clearQuadraticForm();
}
_Hpp->clear();
if (_doSchur) {
_Hll->clear();
_Hpl->clear();
}
// resetting the terms for the pairwise constraints
// built up the current system by storing the Hessian blocks in the edges and vertices
# ifndef G2O_OPENMP
// no threading, we do not need to copy the workspace
JacobianWorkspace& jacobianWorkspace = _optimizer->jacobianWorkspace();
# else
// if running with threads need to produce copies of the workspace for each thread
JacobianWorkspace jacobianWorkspace = _optimizer->jacobianWorkspace();
# pragma omp parallel for default (shared) firstprivate(jacobianWorkspace) if (_optimizer->activeEdges().size() > 100)
# endif
for (int k = 0; k < static_cast<int>(_optimizer->activeEdges().size()); ++k) {
OptimizableGraph::Edge* e = _optimizer->activeEdges()[k];
e->linearizeOplus(jacobianWorkspace); // jacobian of the nodes' oplus (manifold)
e->constructQuadraticForm();
# ifndef NDEBUG
for (size_t i = 0; i < e->vertices().size(); ++i) {
const OptimizableGraph::Vertex* v = static_cast<const OptimizableGraph::Vertex*>(e->vertex(i));
if (! v->fixed()) {
bool hasANan = arrayHasNaN(jacobianWorkspace.workspaceForVertex(i), e->dimension() * v->dimension());
if (hasANan) {
std::cerr << "buildSystem(): NaN within Jacobian for edge " << e << " for vertex " << i << std::endl;
break;
}
}
}
# endif
}
// flush the current system in a sparse block matrix
# ifdef G2O_OPENMP
# pragma omp parallel for default (shared) if (_optimizer->indexMapping().size() > 1000)
# endif
for (int i = 0; i < static_cast<int>(_optimizer->indexMapping().size()); ++i) {
OptimizableGraph::Vertex* v=_optimizer->indexMapping()[i];
int iBase = v->colInHessian();
if (v->marginalized())
iBase+=_sizePoses;
v->copyB(_b+iBase);
}
return 0;
}
示例2: linearizeSystem
void SparseOptimizer::linearizeSystem()
{
# ifdef G2O_OPENMP
# pragma omp parallel for default (shared) if (_activeEdges.size() > 50)
# endif
for (size_t k = 0; k < _activeEdges.size(); ++k)
{
OptimizableGraph::Edge* e = _activeEdges[k];
// jacobian of the nodes' oplus (manifold)
e->linearizeOplus();
}
}
示例3: updateInitialization
//.........这里部分代码省略.........
v->mapHessianMemory(m->data());
lastBlock = m;
}
}
lastBlock->diagonal().array() += 1e-6; // HACK to get Eigen value > 0
for (HyperGraph::EdgeSet::const_iterator it = eset.begin(); it != eset.end(); ++it) {
OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
OptimizableGraph::Vertex* v1 = (OptimizableGraph::Vertex*) e->vertices()[0];
OptimizableGraph::Vertex* v2 = (OptimizableGraph::Vertex*) e->vertices()[1];
int ind1 = v1->hessianIndex();
if (ind1 == -1)
continue;
int ind2 = v2->hessianIndex();
if (ind2 == -1)
continue;
bool transposedBlock = ind1 > ind2;
if (transposedBlock) // make sure, we allocate the upper triangular block
swap(ind1, ind2);
MatrixXd* m = _updateMat.block(ind1, ind2, true);
e->mapHessianMemory(m->data(), 0, 1, transposedBlock);
}
// build the system into _updateMat
for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) {
OptimizableGraph::Edge * e = static_cast<OptimizableGraph::Edge*>(*it);
e->computeError();
}
for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) {
OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
e->linearizeOplus();
}
for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) {
OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
e->constructQuadraticForm();
}
// restore the original data for the vertex
for (int i = 0; i < idx; ++i) {
backupIdx[i].vertex->setHessianIndex(backupIdx[i].hessianIndex);
if (backupIdx[i].hessianData)
backupIdx[i].vertex->mapHessianMemory(backupIdx[i].hessianData);
}
// update the structure of the real block matrix
bool solverStatus = _algorithm->updateStructure(newVertices, eset);
bool updateStatus = computeCholeskyUpdate();
if (! updateStatus) {
cerr << "Error while computing update" << endl;
}
cholmod_sparse* updateAsSparseFactor = cholmod_factor_to_sparse(_cholmodFactor, &_cholmodCommon);
// convert CCS update by permuting back to the permutation of L
if (updateAsSparseFactor->nzmax > _permutedUpdate->nzmax) {
//cerr << "realloc _permutedUpdate" << endl;
cholmod_reallocate_triplet(updateAsSparseFactor->nzmax, _permutedUpdate, &_cholmodCommon);
}
_permutedUpdate->nnz = 0;
_permutedUpdate->nrow = _permutedUpdate->ncol = _L->n;
{
int* Ap = (int*)updateAsSparseFactor->p;